Section 3.4: Complex eigenvalues

Consider the homogeneous system $\mathbf{x}^{\prime}=\mathbf{A x}$.
In this section we suppose that the matrix \mathbf{A} has two complex-conjugate (and not real) eigenvalues:

$$
\lambda=\mu+i \nu \quad \text { and } \quad \bar{\lambda}=\mu-i \nu
$$

where μ, ν are real numbers.
In particular: λ and $\bar{\lambda}$ are distinct and non-zero.

Section 3.4: Complex eigenvalues

Consider the homogeneous system $\mathbf{x}^{\prime}=\mathbf{A x}$.
In this section we suppose that the matrix \mathbf{A} has two complex-conjugate (and not real) eigenvalues:

$$
\lambda=\mu+i \nu \quad \text { and } \quad \bar{\lambda}=\mu-i \nu
$$

where μ, ν are real numbers.
In particular: λ and $\bar{\lambda}$ are distinct and non-zero.

- Eigenvectors $\mathbf{v}=\binom{v_{1}}{v_{2}}$ associated with complex eigenvalues have usually complex components $v_{1}=a_{1}+i b_{1}, v_{2}=a_{2}+i b_{2}$ (with $a_{1}, b_{1}, a_{2}, b_{2} \in \mathbb{R}$).
- If $\mathbf{v}=\mathbf{a}+i \mathbf{b}=\binom{a_{1}}{a_{2}}+i\binom{b_{1}}{b_{2}}$ is an eigenvector of eigenvalue λ, i.e. $A \mathbf{v}=\lambda \mathbf{v}$
then $\bar{v}=\mathbf{a}-i \mathbf{b}=\binom{a_{1}}{a_{2}}-i\binom{b_{1}}{b_{2}}$ is eigenvector of eigenvalue $\bar{\lambda}$, i.e. $A \overline{\mathbf{v}}=\bar{\lambda} \overline{\mathbf{v}}$.

Section 3.4: Complex eigenvalues

Consider the homogeneous system $\mathbf{x}^{\prime}=\mathbf{A x}$.
In this section we suppose that the matrix \mathbf{A} has two complex-conjugate (and not real) eigenvalues:

$$
\lambda=\mu+i \nu \quad \text { and } \quad \bar{\lambda}=\mu-i \nu
$$

where μ, ν are real numbers.
In particular: λ and $\bar{\lambda}$ are distinct and non-zero.

- Eigenvectors $\mathbf{v}=\binom{v_{1}}{v_{2}}$ associated with complex eigenvalues have usually complex components $v_{1}=a_{1}+i b_{1}, v_{2}=a_{2}+i b_{2}$ (with $a_{1}, b_{1}, a_{2}, b_{2} \in \mathbb{R}$).
- If $\mathbf{v}=\mathbf{a}+i \mathbf{b}=\binom{a_{1}}{a_{2}}+i\binom{b_{1}}{b_{2}}$ is an eigenvector of eigenvalue λ, i.e. $A \mathbf{v}=\lambda \mathbf{v}$

$$
\text { then } \bar{v}=\mathbf{a}-i \mathbf{b}=\binom{a_{1}}{a_{2}}-i\binom{b_{1}}{b_{2}} \text { is eigenvector of eigenvalue } \bar{\lambda} \text {, i.e. } A \overline{\mathbf{v}}=\bar{\lambda} \overline{\mathbf{v}} .
$$

Example:

Determine the eigenvalues and the corresponding eigenvectors for $\mathbf{A}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$

We have two linearly independent complex-valued solutions of $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$, namely

$$
\mathbf{x}_{1}(t)=e^{\lambda t} \mathbf{v}=e^{(\mu+i \nu) t} \mathbf{v} \quad \text { and } \quad \mathbf{x}_{2}(t)=e^{\bar{\lambda} t} \overline{\mathbf{v}}=e^{(\mu-i \nu) t} \overline{\mathbf{v}}
$$

But, we want to have two real-valued solutions.

We have two linearly independent complex-valued solutions of $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$, namely

$$
\mathbf{x}_{1}(t)=e^{\lambda t} \mathbf{v}=e^{(\mu+i \nu) t} \mathbf{v} \quad \text { and } \quad \mathbf{x}_{2}(t)=e^{\bar{\lambda} t} \overline{\mathbf{v}}=e^{(\mu-i \nu) t} \overline{\mathbf{v}}
$$

But, we want to have two real-valued solutions.
Notice:

We have two linearly independent complex-valued solutions of $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$, namely

$$
\mathbf{x}_{1}(t)=e^{\lambda t} \mathbf{v}=e^{(\mu+i \nu) t} \mathbf{v} \quad \text { and } \quad \mathbf{x}_{2}(t)=e^{\bar{\lambda} t} \overline{\mathbf{v}}=e^{(\mu-i \nu) t} \overline{\mathbf{v}}
$$

But, we want to have two real-valued solutions.
Notice:

- $\mathbf{x}_{2}(t)=\overline{\mathbf{x}_{1}(t)} \quad$ [because $\bar{z} \bar{s}=\overline{z s}$ for $\left.z, s \in \mathbb{C}\right]$.

We have two linearly independent complex-valued solutions of $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$, namely

$$
\mathbf{x}_{1}(t)=e^{\lambda t} \mathbf{v}=e^{(\mu+i \nu) t} \mathbf{v} \quad \text { and } \quad \mathbf{x}_{2}(t)=e^{\bar{\lambda} t} \overline{\mathbf{v}}=e^{(\mu-i \nu) t} \overline{\mathbf{v}}
$$

But, we want to have two real-valued solutions.
Notice:

- $\mathbf{x}_{2}(t)=\overline{\mathbf{x}_{1}(t)} \quad$ [because $\bar{z} \bar{s}=\overline{z s}$ for $\left.z, s \in \mathbb{C}\right]$.
- Linear combinations of solutions are solutions (principle of superposition): since \mathbf{x}_{1} and $\mathbf{x}_{2}=\overline{\mathbf{x}_{1}}$ are solutions, so are

$$
\frac{1}{2} \mathbf{x}_{1}+\frac{1}{2} \mathbf{x}_{2}=\frac{\mathbf{x}_{1}+\overline{\mathbf{x}_{1}}}{2}=\operatorname{Re} \mathbf{x}_{1}
$$

and

$$
\frac{1}{2 i} \mathbf{x}_{1}-\frac{1}{2 i} \mathbf{x}_{2}=\frac{\mathbf{x}_{1}-\overline{\mathbf{x}_{1}}}{2 i}=\operatorname{Im} \mathbf{x}_{1}
$$

We have two linearly independent complex-valued solutions of $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$, namely

$$
\mathbf{x}_{1}(t)=e^{\lambda t} \mathbf{v}=e^{(\mu+i \nu) t} \mathbf{v} \quad \text { and } \quad \mathbf{x}_{2}(t)=e^{\bar{\lambda} t} \overline{\mathbf{v}}=e^{(\mu-i \nu) t} \overline{\mathbf{v}}
$$

But, we want to have two real-valued solutions.
Notice:

- $\mathbf{x}_{2}(t)=\overline{\mathbf{x}_{1}(t)} \quad$ [because $\bar{z} \bar{s}=\overline{z s}$ for $\left.z, s \in \mathbb{C}\right]$.
- Linear combinations of solutions are solutions (principle of superposition): since \mathbf{x}_{1} and $\mathbf{x}_{2}=\overline{\mathbf{x}_{1}}$ are solutions, so are

$$
\frac{1}{2} \mathbf{x}_{1}+\frac{1}{2} \mathbf{x}_{2}=\frac{\mathbf{x}_{1}+\overline{\mathbf{x}_{1}}}{2}=\operatorname{Re} \mathbf{x}_{1}
$$

and

$$
\frac{1}{2 i} \mathbf{x}_{1}-\frac{1}{2 i} \mathbf{x}_{2}=\frac{\mathbf{x}_{1}-\overline{\mathbf{x}_{1}}}{2 i}=\operatorname{Im} \mathbf{x}_{1}
$$

- $\operatorname{Re} \mathbf{x}_{1}$ and $\operatorname{Im} \mathbf{x}_{1}$ are real-valued solutions.

We have two linearly independent complex-valued solutions of $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$, namely

$$
\mathbf{x}_{1}(t)=e^{\lambda t} \mathbf{v}=e^{(\mu+i \nu) t} \mathbf{v} \quad \text { and } \quad \mathbf{x}_{2}(t)=e^{\bar{\lambda} t} \overline{\mathbf{v}}=e^{(\mu-i \nu) t} \overline{\mathbf{v}}
$$

But, we want to have two real-valued solutions.
Notice:

- $\mathbf{x}_{2}(t)=\overline{\mathbf{x}_{1}(t)} \quad$ [because $\bar{z} \bar{s}=\overline{z s}$ for $\left.z, s \in \mathbb{C}\right]$.
- Linear combinations of solutions are solutions (principle of superposition): since \mathbf{x}_{1} and $\mathbf{x}_{2}=\overline{\mathbf{x}_{1}}$ are solutions, so are

$$
\frac{1}{2} \mathbf{x}_{1}+\frac{1}{2} \mathbf{x}_{2}=\frac{\mathbf{x}_{1}+\overline{\mathbf{x}_{1}}}{2}=\operatorname{Re} \mathbf{x}_{1}
$$

and

$$
\frac{1}{2 i} \mathbf{x}_{1}-\frac{1}{2 i} \mathbf{x}_{2}=\frac{\mathbf{x}_{1}-\overline{\mathbf{x}_{1}}}{2 i}=\operatorname{Im} \mathbf{x}_{1}
$$

- $\operatorname{Re} \mathbf{x}_{1}$ and $\operatorname{Im} \mathbf{x}_{1}$ are real-valued solutions.
- Fact: $\operatorname{Re} \mathbf{x}_{1}$ and $\operatorname{Im} \mathbf{x}_{1}$ are linearly-independent.

We have two linearly independent complex-valued solutions of $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$, namely

$$
\mathbf{x}_{1}(t)=e^{\lambda t} \mathbf{v}=e^{(\mu+i \nu) t} \mathbf{v} \quad \text { and } \quad \mathbf{x}_{2}(t)=e^{\bar{\lambda} t} \overline{\mathbf{v}}=e^{(\mu-i \nu) t} \overline{\mathbf{v}}
$$

But, we want to have two real-valued solutions.
Notice:

- $\mathbf{x}_{2}(t)=\overline{\mathbf{x}_{1}(t)} \quad[$ because $\bar{z} \bar{s}=\overline{z s}$ for $z, s \in \mathbb{C}]$.
- Linear combinations of solutions are solutions (principle of superposition): since \mathbf{x}_{1} and $\mathbf{x}_{2}=\overline{\mathbf{x}_{1}}$ are solutions, so are

$$
\frac{1}{2} \mathbf{x}_{1}+\frac{1}{2} \mathbf{x}_{2}=\frac{\mathbf{x}_{1}+\overline{\mathbf{x}_{1}}}{2}=\operatorname{Re} \mathbf{x}_{1}
$$

and

$$
\frac{1}{2 i} \mathbf{x}_{1}-\frac{1}{2 i} \mathbf{x}_{2}=\frac{\mathbf{x}_{1}-\overline{\mathbf{x}_{1}}}{2 i}=\operatorname{Im} \mathbf{x}_{1}
$$

- $\operatorname{Re} \mathbf{x}_{1}$ and $\operatorname{Im} \mathbf{x}_{1}$ are real-valued solutions.
- Fact: $\operatorname{Re} \mathbf{x}_{1}$ and $\operatorname{Im} \mathbf{x}_{1}$ are linearly-independent.

Conclusion: The general solution of $\mathbf{x}^{\prime}=\mathbf{A x}$ is:

$$
\mathbf{x}(t)=C_{1} \operatorname{Re} \mathbf{x}_{1}(t)+C_{2} \operatorname{Im} \mathbf{x}_{1}(t)
$$

where C_{1}, C_{2} are constants.

Example:

Determine the general solution of $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ where $\mathbf{A}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$

Example:

Determine the general solution of $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ where $\mathbf{A}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$
Solution:
Eigenvalues : $\pm i$. Eigenvectors of \mathbf{A} with eigenvalue i are all the nonzero multiples of $\mathbf{v}=\binom{1}{i}$.

Example:

Determine the general solution of $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ where $\mathbf{A}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$
Solution:
Eigenvalues : $\pm i$. Eigenvectors of \mathbf{A} with eigenvalue i are all the nonzero multiples of $\mathbf{v}=\binom{1}{i}$.
Fundamental set of complex-valued solutions:

Example:

Determine the general solution of $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ where $\mathbf{A}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$
Solution:
Eigenvalues : $\pm i$. Eigenvectors of \mathbf{A} with eigenvalue i are all the nonzero multiples of $\mathbf{v}=\binom{1}{i}$.
Fundamental set of complex-valued solutions: $\mathbf{x}_{1}(t)=e^{i t} \mathbf{v}=\binom{e^{i t}}{i e^{i t}}$ and $\mathbf{x}_{2}(t)=\overline{\mathbf{x}_{1}}(t)$.

Example:

Determine the general solution of $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ where $\mathbf{A}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$
Solution:
Eigenvalues : $\pm i$. Eigenvectors of \mathbf{A} with eigenvalue i are all the nonzero multiples of $\mathbf{v}=\binom{1}{i}$.
Fundamental set of complex-valued solutions: $\mathbf{x}_{1}(t)=e^{i t} \mathbf{v}=\binom{e^{i t}}{i e^{i t}}$ and $\mathbf{x}_{2}(t)=\overline{\mathbf{x}_{1}}(t)$.
Recall: $e^{i t}=\cos t+i \sin t$. So $i e^{i t}=i \cos t-\sin t$.

Example:

Determine the general solution of $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ where $\mathbf{A}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$
Solution:
Eigenvalues : $\pm i$. Eigenvectors of \mathbf{A} with eigenvalue i are all the nonzero multiples of $\mathbf{v}=\binom{1}{i}$.
Fundamental set of complex-valued solutions: $\mathbf{x}_{1}(t)=e^{i t} \mathbf{v}=\binom{e^{i t}}{i e^{i t}}$ and $\mathbf{x}_{2}(t)=\overline{\mathbf{x}_{1}}(t)$.
Recall: $e^{i t}=\cos t+i \sin t$. So $i e^{i t}=i \cos t-\sin t$. Hence

$$
\mathbf{x}_{1}(t)=\binom{\cos t+i \sin t}{-\sin t+i \cos t}=\binom{\cos t}{-\sin t}+i\binom{\sin t}{\cos t}
$$

Example:

Determine the general solution of $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ where $\mathbf{A}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$

Solution:

Eigenvalues : $\pm i$. Eigenvectors of \mathbf{A} with eigenvalue i are all the nonzero multiples of $\mathbf{v}=\binom{1}{i}$.
Fundamental set of complex-valued solutions: $\mathbf{x}_{1}(t)=e^{i t} \mathbf{v}=\binom{e^{i t}}{i e^{i t}}$ and $\mathbf{x}_{2}(t)=\overline{\mathbf{x}_{1}}(t)$.
Recall: $e^{i t}=\cos t+i \sin t$. So $i e^{i t}=i \cos t-\sin t$. Hence

$$
\mathbf{x}_{1}(t)=\binom{\cos t+i \sin t}{-\sin t+i \cos t}=\binom{\cos t}{-\sin t}+i\binom{\sin t}{\cos t}
$$

Fundamental set of real-valued solutions:

Example:

Determine the general solution of $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ where $\mathbf{A}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$

Solution:

Eigenvalues : $\pm i$. Eigenvectors of \mathbf{A} with eigenvalue i are all the nonzero multiples of $\mathbf{v}=\binom{1}{i}$.
Fundamental set of complex-valued solutions: $\mathbf{x}_{1}(t)=e^{i t} \mathbf{v}=\binom{e^{i t}}{i e^{i t}}$ and $\mathbf{x}_{2}(t)=\overline{\mathbf{x}_{1}}(t)$.
Recall: $e^{i t}=\cos t+i \sin t$. So $i e^{i t}=i \cos t-\sin t$. Hence

$$
\mathbf{x}_{1}(t)=\binom{\cos t+i \sin t}{-\sin t+i \cos t}=\binom{\cos t}{-\sin t}+i\binom{\sin t}{\cos t}
$$

Fundamental set of real-valued solutions: $\operatorname{Re} \mathbf{x}_{1}(t)=\binom{\cos t}{-\sin t}$ and $\operatorname{Im} \mathbf{x}_{1}(t)=\binom{\sin t}{\cos t}$.

Example:

Determine the general solution of $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ where $\mathbf{A}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$

Solution:

Eigenvalues : $\pm i$. Eigenvectors of \mathbf{A} with eigenvalue i are all the nonzero multiples of $\mathbf{v}=\binom{1}{i}$.
Fundamental set of complex-valued solutions: $\mathbf{x}_{1}(t)=e^{i t} \mathbf{v}=\binom{e^{i t}}{i e^{i t}}$ and $\mathbf{x}_{2}(t)=\overline{\mathbf{x}_{1}}(t)$.
Recall: $e^{i t}=\cos t+i \sin t$. So $i e^{i t}=i \cos t-\sin t$. Hence

$$
\mathbf{x}_{1}(t)=\binom{\cos t+i \sin t}{-\sin t+i \cos t}=\binom{\cos t}{-\sin t}+i\binom{\sin t}{\cos t}
$$

Fundamental set of real-valued solutions: $\operatorname{Re} \mathbf{x}_{1}(t)=\binom{\cos t}{-\sin t}$ and $\operatorname{Im} \mathbf{x}_{1}(t)=\binom{\sin t}{\cos t}$. General solution:

$$
\mathbf{x}(t)=C_{1} \operatorname{Re} \mathbf{x}_{1}(t)+C_{2} \operatorname{Im} \mathbf{x}_{1}(t)=C_{1}\binom{\cos t}{-\sin t}+C_{1}\binom{\sin t}{\cos t}
$$

where C_{1}, C_{2} are real constants.

Section 3.4 is not over...
... to be continued later...

