Section 3.4: Complex eigenvalues

Consider the homogeneous system $\mathbf{x}' = \mathbf{A}\mathbf{x}$.

In this section we suppose that the matrix **A** has two complex-conjugate (and not real) eigenvalues:

 $\lambda = \mu + i\nu$ and $\overline{\lambda} = \mu - i\nu$

where μ , ν are real numbers.

In particular: λ and $\overline{\lambda}$ are distinct and non-zero.

Section 3.4: Complex eigenvalues

Consider the homogeneous system $\mathbf{x}' = \mathbf{A}\mathbf{x}$.

In this section we suppose that the matrix **A** has two complex-conjugate (and not real) eigenvalues:

$$\lambda = \mu + i\nu$$
 and $\overline{\lambda} = \mu - i\nu$

where μ , ν are real numbers.

In particular: λ and $\overline{\lambda}$ are distinct and non-zero.

Eigenvectors v = (V₁/V₂) associated with complex eigenvalues have usually complex components v₁ = a₁ + ib₁, v₂ = a₂ + ib₂ (with a₁, b₁, a₂, b₂ ∈ ℝ).
If v = a + ib = (a₁/a₂) + i (b₁/b₂) is an eigenvector of eigenvalue λ, i.e. Av = λv

then $\overline{v} = \mathbf{a} - i\mathbf{b} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} - i \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$ is eigenvector of eigenvalue $\overline{\lambda}$, i.e. $A\overline{\mathbf{v}} = \overline{\lambda} \, \overline{\mathbf{v}}$.

(1) 日本 日本 日本 日本 日本

Section 3.4: Complex eigenvalues

Consider the homogeneous system $\mathbf{x}' = \mathbf{A}\mathbf{x}$.

In this section we suppose that the matrix **A** has two complex-conjugate (and not real) eigenvalues:

$$\lambda = \mu + i\nu$$
 and $\overline{\lambda} = \mu - i\nu$

where μ , ν are real numbers.

In particular: λ and $\overline{\lambda}$ are distinct and non-zero.

Eigenvectors v = ^{V1}_{V2} associated with complex eigenvalues have usually complex components v₁ = a₁ + ib₁, v₂ = a₂ + ib₂ (with a₁, b₁, a₂, b₂ ∈ ℝ).
If v = a + ib = ^(a₁)_{a₂} + i ^(b₁)_{b₂} is an eigenvector of eigenvalue λ, i.e. Av = λv then v̄ = a - ib = ^(a₁)_{a₂} - i ^(b₁)_{b₂} is eigenvector of eigenvalue λ̄, i.e. Av̄ = λ̄ v̄.

Example:

Determine the eigenvalues and the corresponding eigenvectors for $\mathbf{A} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$

(日) (個) (E) (E) (E)

$$\mathbf{x}_1(t) = e^{\lambda t} \mathbf{v} = e^{(\mu + i\nu)t} \mathbf{v}$$
 and $\mathbf{x}_2(t) = e^{\overline{\lambda}t} \overline{\mathbf{v}} = e^{(\mu - i\nu)t} \overline{\mathbf{v}}$

But, we want to have two real-valued solutions.

$$\mathbf{x}_1(t) = e^{\lambda t} \mathbf{v} = e^{(\mu + i\nu)t} \mathbf{v}$$
 and $\mathbf{x}_2(t) = e^{\overline{\lambda}t} \overline{\mathbf{v}} = e^{(\mu - i\nu)t} \overline{\mathbf{v}}$

But, we want to have two real-valued solutions.

Notice:

2/4

$$\mathbf{x}_1(t) = e^{\lambda t} \mathbf{v} = e^{(\mu + i\nu)t} \mathbf{v}$$
 and $\mathbf{x}_2(t) = e^{\overline{\lambda}t} \overline{\mathbf{v}} = e^{(\mu - i\nu)t} \overline{\mathbf{v}}$

But, we want to have two **real-valued** solutions.

Notice:

• $\mathbf{x}_2(t) = \overline{\mathbf{x}_1(t)}$ [because $\overline{z} \ \overline{s} = \overline{zs}$ for $z, s \in \mathbb{C}$].

$$\mathbf{x}_1(t) = e^{\lambda t} \mathbf{v} = e^{(\mu + i\nu)t} \mathbf{v}$$
 and $\mathbf{x}_2(t) = e^{\overline{\lambda}t} \overline{\mathbf{v}} = e^{(\mu - i\nu)t} \overline{\mathbf{v}}$

But, we want to have two **real-valued** solutions.

Notice:

- $\mathbf{x}_2(t) = \overline{\mathbf{x}_1(t)}$ [because $\overline{z} \ \overline{s} = \overline{zs}$ for $z, s \in \mathbb{C}$].
- Linear combinations of solutions are solutions (principle of superposition): since x_1 and $x_2 = \overline{x_1}$ are solutions, so are

$$\frac{1}{2}\mathbf{x}_1 + \frac{1}{2}\mathbf{x}_2 = \frac{\mathbf{x}_1 + \overline{\mathbf{x}_1}}{2} = \operatorname{Re}\mathbf{x}_2$$

and

$$\frac{1}{2i}\mathbf{x}_1 - \frac{1}{2i}\mathbf{x}_2 = \frac{\mathbf{x}_1 - \overline{\mathbf{x}_1}}{2i} = \operatorname{Im} \mathbf{x}_1$$

$$\mathbf{x}_1(t) = e^{\lambda t} \mathbf{v} = e^{(\mu + i\nu)t} \mathbf{v}$$
 and $\mathbf{x}_2(t) = e^{\overline{\lambda}t} \overline{\mathbf{v}} = e^{(\mu - i\nu)t} \overline{\mathbf{v}}$

But, we want to have two **real-valued** solutions.

Notice:

- $\mathbf{x}_2(t) = \overline{\mathbf{x}_1(t)}$ [because $\overline{z} \ \overline{s} = \overline{zs}$ for $z, s \in \mathbb{C}$].
- Linear combinations of solutions are solutions (principle of superposition): since x_1 and $x_2 = \overline{x_1}$ are solutions, so are

$$\frac{1}{2}\mathbf{x}_1 + \frac{1}{2}\mathbf{x}_2 = \frac{\mathbf{x}_1 + \overline{\mathbf{x}_1}}{2} = \operatorname{Re}\mathbf{x}_2$$

and

$$\frac{1}{2i}\mathbf{x}_1 - \frac{1}{2i}\mathbf{x}_2 = \frac{\mathbf{x}_1 - \overline{\mathbf{x}_1}}{2i} = \operatorname{Im} \mathbf{x}_1$$

• $\operatorname{Re} \mathbf{x}_1$ and $\operatorname{Im} \mathbf{x}_1$ are real-valued solutions.

・ 同 ト ・ ヨ ト ・ ヨ ト

$$\mathbf{x}_1(t) = e^{\lambda t} \mathbf{v} = e^{(\mu + i\nu)t} \mathbf{v}$$
 and $\mathbf{x}_2(t) = e^{\overline{\lambda}t} \overline{\mathbf{v}} = e^{(\mu - i\nu)t} \overline{\mathbf{v}}$

But, we want to have two real-valued solutions.

Notice:

- $\mathbf{x}_2(t) = \overline{\mathbf{x}_1(t)}$ [because $\overline{z} \ \overline{s} = \overline{zs}$ for $z, s \in \mathbb{C}$].
- Linear combinations of solutions are solutions (principle of superposition): since x_1 and $x_2 = \overline{x_1}$ are solutions, so are

$$\frac{1}{2}\mathbf{x}_1 + \frac{1}{2}\mathbf{x}_2 = \frac{\mathbf{x}_1 + \overline{\mathbf{x}_1}}{2} = \operatorname{Re}\mathbf{x}_2$$

and

$$\frac{1}{2i}\mathbf{x}_1 - \frac{1}{2i}\mathbf{x}_2 = \frac{\mathbf{x}_1 - \overline{\mathbf{x}_1}}{2i} = \operatorname{Im} \mathbf{x}_1$$

- $\operatorname{Re} \mathbf{x}_1$ and $\operatorname{Im} \mathbf{x}_1$ are real-valued solutions.
- Fact: $\operatorname{Re} x_1$ and $\operatorname{Im} x_1$ are linearly-independent.

< 回 > < 三 > < 三 >

$$\mathbf{x}_1(t) = e^{\lambda t} \mathbf{v} = e^{(\mu + i\nu)t} \mathbf{v}$$
 and $\mathbf{x}_2(t) = e^{\overline{\lambda} t} \overline{\mathbf{v}} = e^{(\mu - i\nu)t} \overline{\mathbf{v}}$

But, we want to have two real-valued solutions.

Notice:

- $\mathbf{x}_2(t) = \overline{\mathbf{x}_1(t)}$ [because $\overline{z} \ \overline{s} = \overline{zs}$ for $z, s \in \mathbb{C}$].
- Linear combinations of solutions are solutions (principle of superposition): since x_1 and $x_2 = \overline{x_1}$ are solutions, so are

$$\frac{1}{2}\mathbf{x}_1 + \frac{1}{2}\mathbf{x}_2 = \frac{\mathbf{x}_1 + \overline{\mathbf{x}_1}}{2} = \operatorname{Re}\mathbf{x}_1$$

and

$$\frac{1}{2i}\mathbf{x}_1 - \frac{1}{2i}\mathbf{x}_2 = \frac{\mathbf{x}_1 - \overline{\mathbf{x}_1}}{2i} = \operatorname{Im} \mathbf{x}_1$$

- Re **x**₁ and Im **x**₁ are real-valued solutions.
- Fact: $\operatorname{Re} \mathbf{x}_1$ and $\operatorname{Im} \mathbf{x}_1$ are linearly-independent.

Conclusion: The general solution of $\mathbf{x}' = \mathbf{A}\mathbf{x}$ is:

$$\mathbf{x}(t) = C_1 \operatorname{Re} \mathbf{x}_1(t) + C_2 \operatorname{Im} \mathbf{x}_1(t)$$

where C_1 , C_2 are constants.

・ 何 ト ・ ヨ ト ・ ヨ ト

Determine the general solution of $\mathbf{x}' = \mathbf{A}\mathbf{x}$ where $\mathbf{A} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$

Determine the general solution of $\mathbf{x}' = \mathbf{A}\mathbf{x}$ where $\mathbf{A} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$

Solution:

Eigenvalues : $\pm i$. Eigenvectors of **A** with eigenvalue *i* are all the nonzero multiples of $\mathbf{v} = \begin{pmatrix} 1 \\ i \end{pmatrix}$.

Determine the general solution of $\mathbf{x}' = \mathbf{A}\mathbf{x}$ where $\mathbf{A} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$

Solution:

Eigenvalues : $\pm i$. Eigenvectors of **A** with eigenvalue *i* are all the nonzero multiples of $\mathbf{v} = \begin{pmatrix} 1 \\ i \end{pmatrix}$.

Fundamental set of complex-valued solutions:

Determine the general solution of $\mathbf{x}' = \mathbf{A}\mathbf{x}$ where $\mathbf{A} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ Solution:

Eigenvalues : $\pm i$. Eigenvectors of **A** with eigenvalue *i* are all the nonzero multiples of $\mathbf{v} = \begin{pmatrix} 1 \\ i \end{pmatrix}$.

Fundamental set of complex-valued solutions: $\mathbf{x}_1(t) = e^{it}\mathbf{v} = \begin{pmatrix} e^{it} \\ ie^{it} \end{pmatrix}$ and $\mathbf{x}_2(t) = \overline{\mathbf{x}_1}(t)$.

Determine the general solution of $\mathbf{x}' = \mathbf{A}\mathbf{x}$ where $\mathbf{A} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ Solution:

Eigenvalues : $\pm i$. Eigenvectors of **A** with eigenvalue *i* are all the nonzero multiples of $\mathbf{v} = \begin{pmatrix} 1 \\ i \end{pmatrix}$.

Fundamental set of complex-valued solutions: $\mathbf{x}_1(t) = e^{it}\mathbf{v} = \begin{pmatrix} e^{it} \\ ie^{it} \end{pmatrix}$ and $\mathbf{x}_2(t) = \overline{\mathbf{x}_1}(t)$.

Recall: $e^{it} = \cos t + i \sin t$. So $ie^{it} = i \cos t - \sin t$.

Determine the general solution of $\mathbf{x}' = \mathbf{A}\mathbf{x}$ where $\mathbf{A} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ Solution:

Eigenvalues : $\pm i$. Eigenvectors of **A** with eigenvalue *i* are all the nonzero multiples of $\mathbf{v} = \begin{pmatrix} 1 \\ i \end{pmatrix}$.

Fundamental set of complex-valued solutions: $\mathbf{x}_1(t) = e^{it}\mathbf{v} = \begin{pmatrix} e^{it} \\ ie^{it} \end{pmatrix}$ and $\mathbf{x}_2(t) = \overline{\mathbf{x}_1}(t)$.

Recall: $e^{it} = \cos t + i \sin t$. So $ie^{it} = i \cos t - \sin t$. Hence

$$\mathbf{x}_{1}(t) = \begin{pmatrix} \cos t + i \sin t \\ -\sin t + i \cos t \end{pmatrix} = \begin{pmatrix} \cos t \\ -\sin t \end{pmatrix} + i \begin{pmatrix} \sin t \\ \cos t \end{pmatrix}$$

Determine the general solution of $\mathbf{x}' = \mathbf{A}\mathbf{x}$ where $\mathbf{A} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ Solution:

Eigenvalues : $\pm i$. Eigenvectors of **A** with eigenvalue *i* are all the nonzero multiples of $\mathbf{v} = \begin{pmatrix} 1 \\ i \end{pmatrix}$.

Fundamental set of complex-valued solutions: $\mathbf{x}_1(t) = e^{it}\mathbf{v} = \begin{pmatrix} e^{it} \\ ie^{it} \end{pmatrix}$ and $\mathbf{x}_2(t) = \overline{\mathbf{x}_1}(t)$.

Recall: $e^{it} = \cos t + i \sin t$. So $ie^{it} = i \cos t - \sin t$. Hence

$$\mathbf{x}_{1}(t) = \begin{pmatrix} \cos t + i \sin t \\ -\sin t + i \cos t \end{pmatrix} = \begin{pmatrix} \cos t \\ -\sin t \end{pmatrix} + i \begin{pmatrix} \sin t \\ \cos t \end{pmatrix}$$

Fundamental set of real-valued solutions:

3/4

Determine the general solution of $\mathbf{x}' = \mathbf{A}\mathbf{x}$ where $\mathbf{A} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ Solution:

Eigenvalues : $\pm i$. Eigenvectors of **A** with eigenvalue *i* are all the nonzero multiples of $\mathbf{v} = \begin{pmatrix} 1 \\ i \end{pmatrix}$.

Fundamental set of complex-valued solutions: $\mathbf{x}_1(t) = e^{it}\mathbf{v} = \begin{pmatrix} e^{it} \\ ie^{it} \end{pmatrix}$ and $\mathbf{x}_2(t) = \overline{\mathbf{x}_1}(t)$. Recall: $e^{it} = \cos t + i \sin t$. So $ie^{it} = i \cos t - \sin t$. Hence

ecall: $e^{tt} = \cos t + i \sin t$. So $ie^{tt} = i \cos t - \sin t$. Hence

$$\mathbf{x}_{1}(t) = \begin{pmatrix} \cos t + i \sin t \\ -\sin t + i \cos t \end{pmatrix} = \begin{pmatrix} \cos t \\ -\sin t \end{pmatrix} + i \begin{pmatrix} \sin t \\ \cos t \end{pmatrix}$$

Fundamental set of real-valued solutions: Re $\mathbf{x}_1(t) = \begin{pmatrix} \cos t \\ -\sin t \end{pmatrix}$ and Im $\mathbf{x}_1(t) = \begin{pmatrix} \sin t \\ \cos t \end{pmatrix}$.

Determine the general solution of $\mathbf{x}' = \mathbf{A}\mathbf{x}$ where $\mathbf{A} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ Solution:

Eigenvalues : $\pm i$. Eigenvectors of **A** with eigenvalue *i* are all the nonzero multiples of $\mathbf{v} = \begin{pmatrix} 1 \\ i \end{pmatrix}$.

Fundamental set of complex-valued solutions: $\mathbf{x}_1(t) = e^{it}\mathbf{v} = \begin{pmatrix} e^{it} \\ ie^{it} \end{pmatrix}$ and $\mathbf{x}_2(t) = \overline{\mathbf{x}_1}(t)$. Recall: $e^{it} = \cos t + i \sin t$. So $ie^{it} = i \cos t - \sin t$. Hence

call: $e^n = \cos t + i \sin t$. So $ie^n = i \cos t - \sin t$. Hence

$$\mathbf{x}_{1}(t) = \begin{pmatrix} \cos t + i \sin t \\ -\sin t + i \cos t \end{pmatrix} = \begin{pmatrix} \cos t \\ -\sin t \end{pmatrix} + i \begin{pmatrix} \sin t \\ \cos t \end{pmatrix}$$

Fundamental set of real-valued solutions: $\operatorname{Re} \mathbf{x}_1(t) = \begin{pmatrix} \cos t \\ -\sin t \end{pmatrix}$ and $\operatorname{Im} \mathbf{x}_1(t) = \begin{pmatrix} \sin t \\ \cos t \end{pmatrix}$. General solution:

$$\mathbf{x}(t) = C_1 \operatorname{Re} \mathbf{x}_1(t) + C_2 \operatorname{Im} \mathbf{x}_1(t) = C_1 \begin{pmatrix} \cos t \\ -\sin t \end{pmatrix} + C_1 \begin{pmatrix} \sin t \\ \cos t \end{pmatrix}$$

where C_1, C_2 are real constants.

A D A A B A A B A A B A B B

Section 3.4 is not over... ... to be continued later...