We suppose that **A** is a 2 × 2 matrix with two (necessarily real) equal eigenvalues $\lambda_1 = \lambda_2$. To shorten the notation, write λ instead of $\lambda_1 = \lambda_2$.

A matrix **A** with two repeated eigenvalues can have:

- two linearly independent eigenvectors, if $\mathbf{A} = \begin{pmatrix} \lambda & \mathbf{0} \\ \mathbf{0} & \lambda \end{pmatrix}$.
- one linearly independent eigenvector, if $\mathbf{A} \neq \begin{pmatrix} \lambda & \mathbf{0} \\ \mathbf{0} & \lambda \end{pmatrix}$.

The form and behavior of the solutions of $\mathbf{x}' = \mathbf{A}\mathbf{x}$ is different according to these two situations.

We suppose that **A** is a 2 × 2 matrix with two (necessarily real) equal eigenvalues $\lambda_1 = \lambda_2$. To shorten the notation, write λ instead of $\lambda_1 = \lambda_2$.

A matrix **A** with two repeated eigenvalues can have:

- two linearly independent eigenvectors, if $\mathbf{A} = \begin{pmatrix} \lambda & \mathbf{0} \\ \mathbf{0} & \lambda \end{pmatrix}$.
- one linearly independent eigenvector, if $\mathbf{A} \neq \begin{pmatrix} \lambda & \mathbf{0} \\ \mathbf{0} & \lambda \end{pmatrix}$.

The form and behavior of the solutions of $\mathbf{x}' = \mathbf{A}\mathbf{x}$ is different according to these two situations.

Example:

Show that
$$\mathbf{A} = \begin{pmatrix} -1/2 & 0 \\ 0 & -1/2 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} -1/2 & 1 \\ 0 & -1/2 \end{pmatrix}$ have one repeated eigenvalue λ . Find λ .

We suppose that **A** is a 2 × 2 matrix with two (necessarily real) equal eigenvalues $\lambda_1 = \lambda_2$. To shorten the notation, write λ instead of $\lambda_1 = \lambda_2$.

A matrix **A** with two repeated eigenvalues can have:

- two linearly independent eigenvectors, if $\mathbf{A} = \begin{pmatrix} \lambda & \mathbf{0} \\ \mathbf{0} & \lambda \end{pmatrix}$.
- one linearly independent eigenvector, if $\mathbf{A} \neq \begin{pmatrix} \lambda & \mathbf{0} \\ \mathbf{0} & \lambda \end{pmatrix}$.

The form and behavior of the solutions of $\mathbf{x}' = \mathbf{A}\mathbf{x}$ is different according to these two situations.

Example:

Show that
$$\mathbf{A} = \begin{pmatrix} -1/2 & 0 \\ 0 & -1/2 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} -1/2 & 1 \\ 0 & -1/2 \end{pmatrix}$ have one repeated eigenvalue λ . Find λ . $[\lambda = -1/2]$

We suppose that **A** is a 2 × 2 matrix with two (necessarily real) equal eigenvalues $\lambda_1 = \lambda_2$. To shorten the notation, write λ instead of $\lambda_1 = \lambda_2$.

A matrix **A** with two repeated eigenvalues can have:

- two linearly independent eigenvectors, if $\mathbf{A} = \begin{pmatrix} \lambda & \mathbf{0} \\ \mathbf{0} & \lambda \end{pmatrix}$.
- one linearly independent eigenvector, if $\mathbf{A} \neq \begin{pmatrix} \lambda & \mathbf{0} \\ \mathbf{0} & \lambda \end{pmatrix}$.

The form and behavior of the solutions of $\mathbf{x}' = \mathbf{A}\mathbf{x}$ is different according to these two situations.

Example:

Show that $\mathbf{A} = \begin{pmatrix} -1/2 & 0 \\ 0 & -1/2 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} -1/2 & 1 \\ 0 & -1/2 \end{pmatrix}$ have one repeated eigenvalue λ . Find λ . $[\lambda = -1/2]$

Show that **A** has two linearly independent eigenvectors of eigenvalue λ whereas **B** does not.

[For instance:
$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 and $\mathbf{v}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ for \mathbf{A} ; $\mathbf{v}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ for \mathbf{B}]

Keep the above notation.

• If there are two linearly independent eigenvectors \mathbf{v}_1 and \mathbf{v}_2 of eigenvalue λ , i.e. if $\mathbf{A} = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$:

Then two linearly independent solutions of $\mathbf{x}' = \mathbf{A}\mathbf{x}$ are

$$\mathbf{x}_1(t) = e^{\lambda t} \mathbf{v}_1$$
 and $\mathbf{x}_2(t) = e^{\lambda t} \mathbf{v}_2$

The general solution is

$$\mathbf{x}(t) = C_1 \mathbf{x}_1(t) + C_2 \mathbf{x}_2(t) = C_1 e^{\lambda t} \mathbf{v}_1 + C_2 e^{\lambda t} \mathbf{v}_2.$$

(This case enters in the Theorem stated at the end of Section 3.3).

• If there is only one linearly independent eigenvector \mathbf{v}_1 of eigenvalue λ , i.e. if $\mathbf{A} \neq \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$:

Then two linearly independent solutions of $\mathbf{x}' = \mathbf{A}\mathbf{x}$ are

$$\mathbf{x}_1(t) = e^{\lambda t} \mathbf{v}_1$$
 and $\mathbf{x}_2(t) = e^{\lambda t} (t \mathbf{v}_1 + \mathbf{w}) = t \mathbf{x}_1(t) + e^{\lambda t} \mathbf{w}_1$

where **w** satisfies $(\mathbf{A} - \lambda \mathbf{I})\mathbf{w} = \mathbf{v}_1$

(we say that **w** is a *generalized eigenvector* corresponding to the eigenvalue λ). The **general solution** is

$$\mathbf{x}(t) = C_1 \mathbf{x}_1(t) + C_2 \mathbf{x}_2(t) = C_1 e^{\lambda t} \mathbf{v}_1 + C_2 e^{\lambda t} (t \mathbf{v}_1 + \mathbf{w}).$$

Solve
$$\mathbf{x}' = \mathbf{B}\mathbf{x}$$
 where $\mathbf{B} = \begin{pmatrix} -1/2 & 1 \\ 0 & -1/2 \end{pmatrix}$

Solve
$$\mathbf{x}' = \mathbf{B}\mathbf{x}$$
 where $\mathbf{B} = \begin{pmatrix} -1/2 & 1 \\ 0 & -1/2 \end{pmatrix}$

Solution:

• **B** has one repeated eigenvalue $\lambda = -1/2$ and one linearly independent eigenvector $\mathbf{v}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$. This gives one solution $\mathbf{x}_1(t) = e^{-\frac{1}{2}t}\mathbf{v}_1$.

Solve
$$\mathbf{x}' = \mathbf{B}\mathbf{x}$$
 where $\mathbf{B} = \begin{pmatrix} -1/2 & 1 \\ 0 & -1/2 \end{pmatrix}$

Solution:

- **B** has one repeated eigenvalue $\lambda = -1/2$ and one linearly independent eigenvector $\mathbf{v}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$. This gives one solution $\mathbf{x}_1(t) = e^{-\frac{1}{2}t}\mathbf{v}_1$.
- Find a second linearly independent solution x₂ as follows:

Solve
$$\left(\mathbf{B} - \left(-\frac{1}{2}\right)\mathbf{I}\right)\mathbf{w} = \mathbf{v}_1$$
 for $\mathbf{w} = \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}$, i.e. $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

Solve
$$\mathbf{x}' = \mathbf{B}\mathbf{x}$$
 where $\mathbf{B} = \begin{pmatrix} -1/2 & 1 \\ 0 & -1/2 \end{pmatrix}$

Solution:

- **B** has one repeated eigenvalue $\lambda = -1/2$ and one linearly independent eigenvector $\mathbf{v}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$. This gives one solution $\mathbf{x}_1(t) = e^{-\frac{1}{2}t}\mathbf{v}_1$.
- Find a second linearly independent solution x₂ as follows:

Solve
$$(\mathbf{B} - (-\frac{1}{2})\mathbf{I})\mathbf{w} = \mathbf{v}_1$$
 for $\mathbf{w} = \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}$, i.e. $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.
Get $w_2 = 1$, i.e. $\mathbf{w} = \begin{pmatrix} w_1 \\ 1 \end{pmatrix}$, where $w_1 \in \mathbb{R}$ can be chosen as we want, e.g. $w_1 = 0$.

Solve
$$\mathbf{x}' = \mathbf{B}\mathbf{x}$$
 where $\mathbf{B} = \begin{pmatrix} -1/2 & 1 \\ 0 & -1/2 \end{pmatrix}$

Solution:

- **B** has one repeated eigenvalue $\lambda = -1/2$ and one linearly independent eigenvector $\mathbf{v}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$. This gives one solution $\mathbf{x}_1(t) = e^{-\frac{1}{2}t}\mathbf{v}_1$.
- Find a second linearly independent solution x₂ as follows:

Solve
$$(\mathbf{B} - (-\frac{1}{2})\mathbf{I})\mathbf{w} = \mathbf{v}_1$$
 for $\mathbf{w} = \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}$, i.e. $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.
Get $w_2 = 1$, i.e. $\mathbf{w} = \begin{pmatrix} w_1 \\ 1 \end{pmatrix}$, where $w_1 \in \mathbb{R}$ can be chosen as we want, e.g. $w_1 = 0$.

Then

$$\mathbf{x}_{2}(t) = e^{\lambda t}(t\mathbf{v}_{1} + \mathbf{w}) = e^{-\frac{1}{2}t}\left(t\begin{pmatrix}1\\0\end{pmatrix} + \begin{pmatrix}0\\1\end{pmatrix}\right) = e^{-\frac{1}{2}t}\begin{pmatrix}t\\1\end{pmatrix}$$

Solve
$$\mathbf{x}' = \mathbf{B}\mathbf{x}$$
 where $\mathbf{B} = \begin{pmatrix} -1/2 & 1 \\ 0 & -1/2 \end{pmatrix}$

Solution:

- **B** has one repeated eigenvalue $\lambda = -1/2$ and one linearly independent eigenvector $\mathbf{v}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$. This gives one solution $\mathbf{x}_1(t) = e^{-\frac{1}{2}t}\mathbf{v}_1$.
- Find a second linearly independent solution x₂ as follows:

Solve
$$(\mathbf{B} - (-\frac{1}{2})\mathbf{I})\mathbf{w} = \mathbf{v}_1$$
 for $\mathbf{w} = \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}$, i.e. $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.
Get $w_2 = 1$, i.e. $\mathbf{w} = \begin{pmatrix} w_1 \\ 1 \end{pmatrix}$, where $w_1 \in \mathbb{R}$ can be chosen as we want, e.g. $w_1 = 0$.

Then

$$\mathbf{x}_{2}(t) = e^{\lambda t}(t\mathbf{v}_{1} + \mathbf{w}) = e^{-\frac{1}{2}t}\left(t\begin{pmatrix}1\\0\end{pmatrix} + \begin{pmatrix}0\\1\end{pmatrix}\right) = e^{-\frac{1}{2}t}\begin{pmatrix}t\\1\end{pmatrix}$$

• The general solution is

$$\mathbf{x}(t) = C_1 \mathbf{x}_1(t) + C_2 \mathbf{x}_2(t) = C_1 e^{-\frac{1}{2}t} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + C_2 e^{-\frac{1}{2}t} \begin{pmatrix} t \\ 1 \end{pmatrix} .$$

Solve
$$\mathbf{x}' = \mathbf{B}\mathbf{x}$$
 where $\mathbf{B} = \begin{pmatrix} -1/2 & 1 \\ 0 & -1/2 \end{pmatrix}$

Solution:

- **B** has one repeated eigenvalue $\lambda = -1/2$ and one linearly independent eigenvector $\mathbf{v}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$. This gives one solution $\mathbf{x}_1(t) = e^{-\frac{1}{2}t}\mathbf{v}_1$.
- Find a second linearly independent solution x₂ as follows:

Solve
$$(\mathbf{B} - (-\frac{1}{2})\mathbf{I})\mathbf{w} = \mathbf{v}_1$$
 for $\mathbf{w} = \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}$, i.e. $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.
Get $w_2 = 1$, i.e. $\mathbf{w} = \begin{pmatrix} w_1 \\ 1 \end{pmatrix}$, where $w_1 \in \mathbb{R}$ can be chosen as we want, e.g. $w_1 = 0$.

Then

$$\mathbf{x}_{2}(t) = e^{\lambda t}(t\mathbf{v}_{1} + \mathbf{w}) = e^{-\frac{1}{2}t}\left(t\begin{pmatrix}1\\0\end{pmatrix} + \begin{pmatrix}0\\1\end{pmatrix}\right) = e^{-\frac{1}{2}t}\begin{pmatrix}t\\1\end{pmatrix}$$

• The general solution is

$$\mathbf{x}(t) = C_1 \mathbf{x}_1(t) + C_2 \mathbf{x}_2(t) = C_1 e^{-\frac{1}{2}t} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + C_2 e^{-\frac{1}{2}t} \begin{pmatrix} t \\ 1 \end{pmatrix} .$$

Remark: A different choice of w_2 (for instance $w_2 = 2$) would give a different \mathbf{x}_2 but the **same** general solution (try).

It is no surprise:

It is no surprise:

Section 3.5 is not over... ... to be continued later...

Summary: the general solution of $\mathbf{x}' = \mathbf{A}\mathbf{x}$

(A is a 2×2 matrix with real entries)

The form of the general solution of $\mathbf{x}' = \mathbf{A}\mathbf{x}$ depends on the eigenvalues λ_1, λ_2 of \mathbf{A} as follows:

(1) λ_1, λ_2 both real and distinct: $\mathbf{x}(t) = C_1 e^{\lambda_1 t} \mathbf{v}_1 + C_2 e^{\lambda_2 t} \mathbf{v}_2$

where:
$$\diamond \mathbf{v}_1$$
 is an eigenvector of **A** of eigenvalue λ_1 ,
 $\diamond \mathbf{v}_2$ is an eigenvector of **A** of eigenvalue λ_2 ,
 $\diamond C_1, C_2$ are real constants.
(2) λ_1, λ_2 **complex-conjugate & not real**: $\mathbf{x}(t) = C_1 \operatorname{Re} \mathbf{x}_1(t) + C_2 \operatorname{Im} \mathbf{x}_1(t)$
where: $\diamond \mathbf{x}_1(t) = e^{\lambda_1 t} \mathbf{v}_1$ and \mathbf{v}_1 is an eigenvector of **A** of eigenvalue λ_1 ,
 $\diamond C_1, C_2$ are real constants.
(3) $\lambda_1 = \lambda_2$ both real and $\mathbf{A} = \begin{pmatrix} \lambda_1 & 0\\ 0 & \lambda_1 \end{pmatrix}$: same form as in case (1).
(4) $\lambda_1 = \lambda_2$ both real and $\mathbf{A} \neq \begin{pmatrix} \lambda_1 & 0\\ 0 & \lambda_1 \end{pmatrix}$: $\mathbf{x}(t) = C_1 e^{\lambda_1 t} \mathbf{v}_1 + C_2 e^{\lambda_1 t} (t \mathbf{v}_1 + \mathbf{w})$
where: $\diamond \mathbf{v}_1$ is an eigenvector of **A** of eigenvalue λ_1 ,
 $\diamond \mathbf{w}$ satisfies $(\mathbf{A} - \lambda_1 \mathbf{I}) \mathbf{w} = \mathbf{v}_1$

 $\diamond C_1, C_2$ are real constants.

Remark: the constant C_1, C_2 are also called **free parameters**.

What we have studied:

Systems of two first-order linear differential equations

Definitions, matrix notation, and examples (Section 3.2) Applications to 2nd order linear differential equations (Section 3.2)

Special case of homogeneous systems with constant coefficients $\mathbf{x}' = \mathbf{A}\mathbf{x}$:

General properties:

- Principle of superposition (Section 3.3)
- Wronskian and linear independence of solutions (Section 3.3)
- If λ is an eigenvalue of **A** with eigenvector **v**, then $\mathbf{x}(t) = e^{\lambda t} \mathbf{v}$ is a solution of

$$\mathbf{x}' = \mathbf{A}\mathbf{x}$$
. (Section 3.3)

How to find the general solution of $\mathbf{x}' = \mathbf{A}\mathbf{x}$: different situations (Sections 3.3, 3.4, 3.5)

What we have studied:

Systems of two first-order linear differential equations

Definitions, matrix notation, and examples (Section 3.2) Applications to 2nd order linear differential equations (Section 3.2)

Special case of homogeneous systems with constant coefficients $\mathbf{x}' = \mathbf{A}\mathbf{x}$:

General properties:

- Principle of superposition (Section 3.3)
- Wronskian and linear independence of solutions (Section 3.3)
- If λ is an eigenvalue of **A** with eigenvector **v**, then $\mathbf{x}(t) = e^{\lambda t} \mathbf{v}$ is a solution of

x' = **Ax**. (Section 3.3)

How to find the general solution of $\mathbf{x}' = \mathbf{A}\mathbf{x}$: different situations (Sections 3.3, 3.4, 3.5)

What comes next?

What we have studied:

Systems of two first-order linear differential equations

Definitions, matrix notation, and examples (Section 3.2) Applications to 2nd order linear differential equations (Section 3.2)

Special case of homogeneous systems with constant coefficients $\mathbf{x}' = \mathbf{A}\mathbf{x}$:

General properties:

- Principle of superposition (Section 3.3)
- Wronskian and linear independence of solutions (Section 3.3)
- If λ is an eigenvalue of **A** with eigenvector **v**, then $\mathbf{x}(t) = e^{\lambda t} \mathbf{v}$ is a solution of

 $\mathbf{x}' = \mathbf{A}\mathbf{x}$. (Section 3.3)

How to find the general solution of $\mathbf{x}' = \mathbf{A}\mathbf{x}$: different situations (Sections 3.3, 3.4, 3.5)

What comes next?

Systems of *n* first-order linear differential equations

(Chapter 6: Sections 6.1, 6.2, 6.3, 6.4)

What we have studied:

Systems of two first-order linear differential equations

Definitions, matrix notation, and examples (Section 3.2) Applications to 2nd order linear differential equations (Section 3.2)

Special case of homogeneous systems with constant coefficients $\mathbf{x}' = \mathbf{A}\mathbf{x}$:

General properties:

- Principle of superposition (Section 3.3)
- Wronskian and linear independence of solutions (Section 3.3)
- If λ is an eigenvalue of **A** with eigenvector **v**, then $\mathbf{x}(t) = e^{\lambda t} \mathbf{v}$ is a solution of

 $\mathbf{x}' = \mathbf{A}\mathbf{x}$. (Section 3.3)

How to find the general solution of $\mathbf{x}' = \mathbf{A}\mathbf{x}$: different situations (Sections 3.3, 3.4, 3.5)

What comes next?

Systems of *n* first-order linear differential equations

(Chapter 6: Sections 6.1, 6.2, 6.3, 6.4)

Geometric methods (direction fields, equilibrium solutions, phase portraits) back to two first-order linear DE with constant coefficients $\mathbf{x}' = \mathbf{A}\mathbf{x} + \mathbf{b}$

Dynamics and stability of the solutions of $\mathbf{x}' = \mathbf{A}\mathbf{x}$ (Sections 3.3, 3.4, 3.5).

What we have studied:

Systems of two first-order linear differential equations

Definitions, matrix notation, and examples (Section 3.2) Applications to 2nd order linear differential equations (Section 3.2)

Special case of homogeneous systems with constant coefficients $\mathbf{x}' = \mathbf{A}\mathbf{x}$:

General properties:

- Principle of superposition (Section 3.3)
- Wronskian and linear independence of solutions (Section 3.3)
- If λ is an eigenvalue of **A** with eigenvector **v**, then $\mathbf{x}(t) = e^{\lambda t} \mathbf{v}$ is a solution of

 $\mathbf{x}' = \mathbf{A}\mathbf{x}$. (Section 3.3)

How to find the general solution of $\mathbf{x}' = \mathbf{A}\mathbf{x}$: different situations (Sections 3.3, 3.4, 3.5)

What comes next?

Systems of *n* first-order linear differential equations

(Chapter 6: Sections 6.1, 6.2, 6.3, 6.4)

Geometric methods (direction fields, equilibrium solutions, phase portraits) back to two first-order linear DE with constant coefficients $\mathbf{x}' = \mathbf{A}\mathbf{x} + \mathbf{b}$

Dynamics and stability of the solutions of $\mathbf{x}' = \mathbf{A}\mathbf{x}$ (Sections 3.3, 3.4, 3.5).

A brief introduction to nonlinear systems (Section 3.6)