
Section 3.5: Repeated eigenvalues
We suppose that A is a 2× 2 matrix with two (necessarily real) equal eigenvalues
λ1 = λ2. To shorten the notation, write λ instead of λ1 = λ2.

A matrix A with two repeated eigenvalues can have:

two linearly independent eigenvectors, if A =

(
λ 0
0 λ

)
.

one linearly independent eigenvector, if A 6=
(
λ 0
0 λ

)
.

The form and behavior of the solutions of x′ = Ax is different according to these two
situations.

Example:

Show that A =

(
−1/2 0

0 −1/2

)
and B =

(
−1/2 1

0 −1/2

)
have one repeated

eigenvalue λ. Find λ. [λ = −1/2]

Show that A has two linearly independent eigenvectors of eigenvalue λ whereas B
does not. [

For instance: v1 =

(
1
0

)
and v2 =

(
0
1

)
for A; v1 =

(
1
0

)
for B

]
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Keep the above notation.

If there are two linearly independent eigenvectors v1 and v2 of eigenvalue λ,

i.e. if A =

(
λ 0
0 λ

)
:

Then two linearly independent solutions of x′ = Ax are

x1(t) = eλtv1 and x2(t) = eλtv2

The general solution is

x(t) = C1x1(t) + C2x2(t) = C1eλtv1 + C2eλtv2.

(This case enters in the Theorem stated at the end of Section 3.3).
If there is only one linearly independent eigenvector v1 of eigenvalue λ,

i.e. if A 6=
(
λ 0
0 λ

)
:

Then two linearly independent solutions of x′ = Ax are

x1(t) = eλtv1 and x2(t) = eλt(tv1 + w) = tx1(t) + eλtw.

where w satisfies (A− λI)w = v1

(we say that w is a generalized eigenvector corresponding to the eigenvalue λ).
The general solution is

x(t) = C1x1(t) + C2x2(t) = C1eλtv1 + C2eλt(tv1 + w) .
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Example:

Solve x′ = Bx where B =

(
−1/2 1

0 −1/2

)

Solution:

B has one repeated eigenvalue λ = −1/2 and one linearly independent eigenvector

v1 =

(
1
0

)
. This gives one solution x1(t) = e−

1
2 t v1.

Find a second linearly independent solution x2 as follows:

Solve
(

B− (− 1
2 )I

)
w = v1 for w =

(
w1
w2

)
, i.e.

(
0 1
0 0

)(
w1
w2

)
=

(
1
0

)
.

Get w2 = 1, i.e. w =

(
w1
1

)
, where w1 ∈ R can be chosen as we want, e.g. w1 = 0.

Then

x2(t) = eλt (tv1 + w) = e−
1
2 t
(

t
(

1
0

)
+

(
0
1

))
= e−

1
2 t

(
t
1

)
.

The general solution is

x(t) = C1x1(t) + C2x2(t) = C1e−
1
2 t

(
1
0

)
+ C2e−

1
2 t

(
t
1

)
.

Remark: A different choice of w2 (for instance w2 = 2) would give a different x2 but the same
general solution (try).
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It is no surprise:

Section 3.5 is not over...
... to be continued later...
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Summary: the general solution of x′ = Ax
(A is a 2× 2 matrix with real entries)
The form of the general solution of x′ = Ax depends on the eigenvalues λ1, λ2 of A as
follows:

(1) λ1, λ2 both real and distinct: x(t) = C1eλ1tv1 + C2eλ2tv2

where: � v1 is an eigenvector of A of eigenvalue λ1,
� v2 is an eigenvector of A of eigenvalue λ2,
� C1,C2 are real constants.

(2) λ1, λ2 complex-conjugate & not real: x(t) = C1 Re x1(t) + C2 Im x1(t)

where: � x1(t) = eλ1t v1 and v1 is an eigenvector of A of eigenvalue λ1,
� C1,C2 are real constants.

(3) λ1 = λ2 both real and A =

(
λ1 0
0 λ1

)
: same form as in case (1).

(4) λ1 = λ2 both real and A 6=
(
λ1 0
0 λ1

)
: x(t) = C1eλ1tv1 + C2eλ1t(tv1 + w)

where: � v1 is an eigenvector of A of eigenvalue λ1,
� w satisfies (A− λ1I)w = v1
� C1,C2 are real constants.

Remark: the constant C1,C2 are also called free parameters.
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Plan (Chapters 3 and 6)
What we have studied:
Systems of two first-order linear differential equations
Definitions, matrix notation, and examples (Section 3.2)
Applications to 2nd order linear differential equations (Section 3.2)
Special case of homogeneous systems with constant coefficients x′ = Ax:

General properties:
• Principle of superposition (Section 3.3)
• Wronskian and linear independence of solutions (Section 3.3)
• If λ is an eigenvalue of A with eigenvector v, then x(t) = eλt v is a solution of
x′ = Ax. (Section 3.3)

How to find the general solution of x′ = Ax:
different situations (Sections 3.3, 3.4, 3.5)

What comes next?

Systems of n first-order linear differential equations
(Chapter 6: Sections 6.1, 6.2, 6.3, 6.4)
Geometric methods (direction fields, equilibrium solutions, phase portraits)
back to two first-order linear DE with constant coefficients x′ = Ax + b
Dynamics and stability of the solutions of x′ = Ax (Sections 3.3, 3.4, 3.5).

A brief introduction to nonlinear systems (Section 3.6)
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