Section 3.5: Repeated eigenvalues

We suppose that A is a 2 x 2 matrix with two (necessarily real) equal eigenvalues
At = o, To shorten the notation, write ) instead of \ = X..

A matrix A with two repeated eigenvalues can have:
o two linearly independent eigenvectors, if A = (3 g)

o one linearly independent eigenvector, if A # (3 ?\)

The form and behavior of the solutions of X' = Ax is different according to these two
situations.
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We suppose that A is a 2 x 2 matrix with two (necessarily real) equal eigenvalues
A = Ao To shorten the notation, write )\ instead of \; = \s.

A matrix A with two repeated eigenvalues can have:

o two linearly independent eigenvectors, if A = (8‘ ())\>

o one linearly independent eigenvector, if A # (3 ?\)

The form and behavior of the solutions of X' = Ax is different according to these two
situations.

Example:

_(-1/2 0 _ (12 1
Show that A = ( 0 _1/2> and B = ( 0 _1/2) have one repeated
eigenvalue X. Find \. [A=-1/2]

Show that A has two linearly independent eigenvectors of eigenvalue \ whereas B

does not.
[For instance: vi = (;) and vo = (?) for A; vy = <(1)) for B]



Keep the above notation.
o If there are two linearly independent eigenvectors v and v, of eigenvalue A,

ie. if A= A0,

.. =0 A):

Then two linearly independent solutions of X’ = Ax are

xi()=e vy  and  xo(t) = eMva
The general solution is
X(T) = C1X1(t) + Cng(t) =G e“v1 + CgeMV2.

(This case enters in the Theorem stated at the end of Section 3.3).
o If there is only one linearly independent eigenvector v of eigenvalue A,

. A 0),
ie ifA# (0 A)'
Then two linearly independent solutions of X' = Ax are
xi()=e vy and  xo(t) = eM(tvy + w) = txq(t) + eMw.

where w satisfies (A — Al)w = vy
(we say that w is a generalized eigenvector corresponding to the eigenvalue \).
The general solution is

X(t) = C1X1(t) + Cng(t) = Cy e“v1 =+ CgeM(l‘V1 +W) .
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Example:
Solve x’ = Bx where B = <_1/2 ! )

0 —-1/2
Solution:
@ B has one repeated eigenvalue A = —1/2 and one linearly independent eigenvector
vy = ((1)) This gives one solution x; (f) = e~ 2'v;.

o Find a second linearly independent solution x, as follows:

Solve (B - (f%)l>w =v; forw = (%;), i.e. (g é) (%;) = (;)

Getw, =1,i.e.w= <v1v1) , where wy € R can be chosen as we want, e.g. wy = 0.

Xa(t) = eM(tvy +w) = e*%’(t (8) + (?) ) —e 2! (f) )

o The general solution is

Then

X(t) = Cixi (1) + CoXa(t) = Cre~ 3! ((1)) +Cre 3! (1’) .

Remark: A different choice of ws, (for instance w, = 2) would give a different x, but the same
general solution (try).
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Section 3.5 is not over...

... to be continued later...



Summary: the general solution of x’ = Ax
(A'is a 2 x 2 matrix with real entries)

The form of the general solution of X’ = Ax depends on the eigenvalues A1, X2 of A as

follows:
(1) A1, A2 both real and distinct: ~ x(t) = CyeM'vy + Coe™2'v,

where: ¢ vy is an eigenvector of A of eigenvalue \q,
© Vg is an eigenvector of A of eigenvalue X,,
o Cy, C, are real constants.

(2) A1, A2 complex-conjugate & not real:  x(t) = Ci Rexy(t) + Co Im x+(t)

where: o xq(t) = e*lvy and vy is an eigenvector of A of eigenvalue )y,
o Cy, G, are real constants.

A0

0 X\

0
A

(8) A = A2 both real and A = ( ): same form as in case (1).

(4) As = Ao both real and A = (A(;

where: ¢ vy is an eigenvector of A of eigenvalue A1,
o w satisfies (A — AM)w = vy
o Cy, Co are real constants.

Remark: the constant Cy, C, are also called free parameters.

): X(t) = Cretivy + Coe™i(tvy + w)
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General properties:

e Principle of superposition (Section 3.3)

e Wronskian and linear independence of solutions (Section 3.3)

o If X is an eigenvalue of A with eigenvector v, then x(t) = e*!v is a solution of
x’ = Ax. (Section 3.3)

How to find the general solution of x’ = Ax:
different situations (Sections 3.3, 3.4, 3.5)



Plan (Chapters 3 and 6)

What we have studied:

Systems of two first-order linear differential equations
Definitions, matrix notation, and examples (Section 3.2)
Applications to 2nd order linear differential equations (Section 3.2)

Special case of homogeneous systems with constant coefficients X' = AX:

General properties:

e Principle of superposition (Section 3.3)

e Wronskian and linear independence of solutions (Section 3.3)

o If X is an eigenvalue of A with eigenvector v, then x(t) = e*!v is a solution of
x’ = Ax. (Section 3.3)

How to find the general solution of x’ = Ax:

different situations (Sections 3.3, 3.4, 3.5)

What comes next?



Plan (Chapters 3 and 6)

What we have studied:

Systems of two first-order linear differential equations
Definitions, matrix notation, and examples (Section 3.2)
Applications to 2nd order linear differential equations (Section 3.2)

Special case of homogeneous systems with constant coefficients X' = AX:

General properties:

e Principle of superposition (Section 3.3)

e Wronskian and linear independence of solutions (Section 3.3)

o If X is an eigenvalue of A with eigenvector v, then x(t) = e*!v is a solution of
x’ = Ax. (Section 3.3)

How to find the general solution of x’ = Ax:
different situations (Sections 3.3, 3.4, 3.5)

What comes next?

Systems of n first-order linear differential equations
(Chapter 6: Sections 6.1, 6.2, 6.3, 6.4)



Plan (Chapters 3 and 6)

What we have studied:

Systems of two first-order linear differential equations
Definitions, matrix notation, and examples (Section 3.2)
Applications to 2nd order linear differential equations (Section 3.2)

Special case of homogeneous systems with constant coefficients X' = AX:
General properties:
e Principle of superposition (Section 3.3)
e Wronskian and linear independence of solutions (Section 3.3)

o If X is an eigenvalue of A with eigenvector v, then x(t) = e*!v is a solution of
x’ = Ax. (Section 3.3)

How to find the general solution of x’ = Ax:
different situations (Sections 3.3, 3.4, 3.5)

What comes next?
Systems of n first-order linear differential equations
(Chapter 6: Sections 6.1, 6.2, 6.3, 6.4)

Geometric methods (direction fields, equilibrium solutions, phase portraits)
back to two first-order linear DE with constant coefficients x’ = Ax + b

Dynamics and stability of the solutions of x’ = Ax (Sections 3.3, 3.4, 3.5).

D 4 44 6/6



Plan (Chapters 3 and 6)

What we have studied:

Systems of two first-order linear differential equations
Definitions, matrix notation, and examples (Section 3.2)
Applications to 2nd order linear differential equations (Section 3.2)

Special case of homogeneous systems with constant coefficients X' = AX:
General properties:
e Principle of superposition (Section 3.3)
e Wronskian and linear independence of solutions (Section 3.3)

o If X is an eigenvalue of A with eigenvector v, then x(t) = e*!v is a solution of
x’ = Ax. (Section 3.3)

How to find the general solution of x’ = Ax:
different situations (Sections 3.3, 3.4, 3.5)

What comes next?
Systems of n first-order linear differential equations
(Chapter 6: Sections 6.1, 6.2, 6.3, 6.4)

Geometric methods (direction fields, equilibrium solutions, phase portraits)
back to two first-order linear DE with constant coefficients x’ = Ax + b

Dynamics and stability of the solutions of x’ = Ax (Sections 3.3, 3.4, 3.5).
A brief introduction to nonlinear systems (Section 3.6)

D 4 44 6/6



