Section 3.5: Repeated eigenvalues

We suppose that \mathbf{A} is a 2×2 matrix with two (necessarily real) equal eigenvalues $\lambda_{1}=\lambda_{2}$. To shorten the notation, write λ instead of $\lambda_{1}=\lambda_{2}$.

A matrix \mathbf{A} with two repeated eigenvalues can have:

- two linearly independent eigenvectors, if $\mathbf{A}=\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda\end{array}\right)$.
- one linearly independent eigenvector, if $\mathbf{A} \neq\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda\end{array}\right)$.

The form and behavior of the solutions of $\mathbf{x}^{\prime}=\mathbf{A x}$ is different according to these two situations.

Section 3.5: Repeated eigenvalues

We suppose that \mathbf{A} is a 2×2 matrix with two (necessarily real) equal eigenvalues $\lambda_{1}=\lambda_{2}$. To shorten the notation, write λ instead of $\lambda_{1}=\lambda_{2}$.

A matrix \mathbf{A} with two repeated eigenvalues can have:

- two linearly independent eigenvectors, if $\mathbf{A}=\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda\end{array}\right)$.
- one linearly independent eigenvector, if $\mathbf{A} \neq\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda\end{array}\right)$.

The form and behavior of the solutions of $\mathbf{x}^{\prime}=\mathbf{A x}$ is different according to these two situations.

Example:

Show that $\mathbf{A}=\left(\begin{array}{cc}-1 / 2 & 0 \\ 0 & -1 / 2\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{cc}-1 / 2 & 1 \\ 0 & -1 / 2\end{array}\right)$ have one repeated eigenvalue λ. Find λ.

Section 3.5: Repeated eigenvalues

We suppose that \mathbf{A} is a 2×2 matrix with two (necessarily real) equal eigenvalues $\lambda_{1}=\lambda_{2}$. To shorten the notation, write λ instead of $\lambda_{1}=\lambda_{2}$.

A matrix \mathbf{A} with two repeated eigenvalues can have:

- two linearly independent eigenvectors, if $\mathbf{A}=\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda\end{array}\right)$.
- one linearly independent eigenvector, if $\mathbf{A} \neq\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda\end{array}\right)$.

The form and behavior of the solutions of $\mathbf{x}^{\prime}=\mathbf{A x}$ is different according to these two situations.

Example:

Show that $\mathbf{A}=\left(\begin{array}{cc}-1 / 2 & 0 \\ 0 & -1 / 2\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{cc}-1 / 2 & 1 \\ 0 & -1 / 2\end{array}\right)$ have one repeated eigenvalue λ. Find λ.
$[\lambda=-1 / 2]$

Section 3.5: Repeated eigenvalues

We suppose that \mathbf{A} is a 2×2 matrix with two (necessarily real) equal eigenvalues $\lambda_{1}=\lambda_{2}$. To shorten the notation, write λ instead of $\lambda_{1}=\lambda_{2}$.

A matrix A with two repeated eigenvalues can have:

- two linearly independent eigenvectors, if $\mathbf{A}=\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda\end{array}\right)$.
- one linearly independent eigenvector, if $\mathbf{A} \neq\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda\end{array}\right)$.

The form and behavior of the solutions of $\mathbf{x}^{\prime}=\mathbf{A x}$ is different according to these two situations.

Example:

Show that $\mathbf{A}=\left(\begin{array}{cc}-1 / 2 & 0 \\ 0 & -1 / 2\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{cc}-1 / 2 & 1 \\ 0 & -1 / 2\end{array}\right)$ have one repeated eigenvalue λ. Find λ.

$$
[\lambda=-1 / 2]
$$

Show that \mathbf{A} has two linearly independent eigenvectors of eigenvalue λ whereas \mathbf{B} does not.

$$
\text { [For instance: } \left.\mathbf{v}_{1}=\binom{1}{0} \text { and } \mathbf{v}_{2}=\binom{0}{1} \text { for } \mathbf{A} ; \quad \mathbf{v}_{1}=\binom{1}{0} \text { for } \mathbf{B}\right]
$$

Keep the above notation.

- If there are two linearly independent eigenvectors \mathbf{v}_{1} and \mathbf{v}_{2} of eigenvalue λ,
i.e. if $\mathbf{A}=\left(\begin{array}{ll}\lambda & 0 \\ 0 & \lambda\end{array}\right)$:

Then two linearly independent solutions of $\mathbf{x}^{\prime}=\mathbf{A x}$ are

$$
\mathbf{x}_{1}(t)=e^{\lambda t} \mathbf{v}_{1} \quad \text { and } \quad \mathbf{x}_{2}(t)=e^{\lambda t} \mathbf{v}_{2}
$$

The general solution is

$$
\mathbf{x}(t)=C_{1} \mathbf{x}_{1}(t)+C_{2} \mathbf{x}_{2}(t)=C_{1} e^{\lambda t} \mathbf{v}_{1}+C_{2} e^{\lambda t} \mathbf{v}_{2}
$$

(This case enters in the Theorem stated at the end of Section 3.3).

- If there is only one linearly independent eigenvector \mathbf{v}_{1} of eigenvalue λ, i.e. if $\mathbf{A} \neq\left(\begin{array}{ll}\lambda & 0 \\ 0 & \lambda\end{array}\right)$:

Then two linearly independent solutions of $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ are

$$
\mathbf{x}_{1}(t)=e^{\lambda t} \mathbf{v}_{1} \quad \text { and } \quad \mathbf{x}_{2}(t)=e^{\lambda t}\left(t \mathbf{v}_{1}+\mathbf{w}\right)=t \mathbf{x}_{1}(t)+e^{\lambda t} \mathbf{w}
$$

where \mathbf{w} satisfies $(\mathbf{A}-\lambda \mathbf{I}) \mathbf{w}=\mathbf{v}_{1}$
(we say that \mathbf{w} is a generalized eigenvector corresponding to the eigenvalue λ).
The general solution is

$$
\mathbf{x}(t)=C_{1} \mathbf{x}_{1}(t)+C_{2} \mathbf{x}_{2}(t)=C_{1} e^{\lambda t} \mathbf{v}_{1}+C_{2} e^{\lambda t}\left(t \mathbf{v}_{1}+\mathbf{w}\right)
$$

Example:
Solve $\mathbf{x}^{\prime}=\mathbf{B} \mathbf{x}$ where $\mathbf{B}=\left(\begin{array}{cc}-1 / 2 & 1 \\ 0 & -1 / 2\end{array}\right)$

Example:

Solve $\mathbf{x}^{\prime}=\mathbf{B} \mathbf{x}$ where $\mathbf{B}=\left(\begin{array}{cc}-1 / 2 & 1 \\ 0 & -1 / 2\end{array}\right)$

Solution:

- B has one repeated eigenvalue $\lambda=-1 / 2$ and one linearly independent eigenvector $\mathbf{v}_{1}=\binom{1}{0} . \quad$ This gives one solution $\mathbf{x}_{1}(t)=e^{-\frac{1}{2} t} \mathbf{v}_{1}$.

Example:

Solve $\mathbf{x}^{\prime}=\mathbf{B} \mathbf{x}$ where $\mathbf{B}=\left(\begin{array}{cc}-1 / 2 & 1 \\ 0 & -1 / 2\end{array}\right)$

Solution:

- B has one repeated eigenvalue $\lambda=-1 / 2$ and one linearly independent eigenvector $\mathbf{v}_{1}=\binom{1}{0} . \quad$ This gives one solution $\mathbf{x}_{1}(t)=e^{-\frac{1}{2} t} \mathbf{v}_{1}$.
- Find a second linearly independent solution \mathbf{x}_{2} as follows:

Solve $\left(\mathbf{B}-\left(-\frac{1}{2}\right) \mathbf{I}\right) \mathbf{w}=\mathbf{v}_{1}$ for $\mathbf{w}=\binom{w_{1}}{w_{2}}$, i.e. $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\binom{w_{1}}{w_{2}}=\binom{1}{0}$.

Example:

Solve $\mathbf{x}^{\prime}=\mathbf{B} \mathbf{x}$ where $\mathbf{B}=\left(\begin{array}{cc}-1 / 2 & 1 \\ 0 & -1 / 2\end{array}\right)$

Solution:

- B has one repeated eigenvalue $\lambda=-1 / 2$ and one linearly independent eigenvector $\mathbf{v}_{1}=\binom{1}{0} . \quad$ This gives one solution $\mathbf{x}_{1}(t)=e^{-\frac{1}{2} t} \mathbf{v}_{1}$.
- Find a second linearly independent solution \mathbf{x}_{2} as follows:

Solve $\left(\mathbf{B}-\left(-\frac{1}{2}\right) \mathbf{I}\right) \mathbf{w}=\mathbf{v}_{1}$ for $\mathbf{w}=\binom{w_{1}}{w_{2}}$, i.e. $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\binom{w_{1}}{w_{2}}=\binom{1}{0}$.
Get $w_{2}=1$, i.e. $\mathbf{w}=\binom{w_{1}}{1}$, where $w_{1} \in \mathbb{R}$ can be chosen as we want, e.g. $w_{1}=0$.

Example:

Solve $\mathbf{x}^{\prime}=\mathbf{B} \mathbf{x}$ where $\mathbf{B}=\left(\begin{array}{cc}-1 / 2 & 1 \\ 0 & -1 / 2\end{array}\right)$

Solution:

- B has one repeated eigenvalue $\lambda=-1 / 2$ and one linearly independent eigenvector $\mathbf{v}_{1}=\binom{1}{0} . \quad$ This gives one solution $\mathbf{x}_{1}(t)=e^{-\frac{1}{2} t} \mathbf{v}_{1}$.
- Find a second linearly independent solution \mathbf{x}_{2} as follows:

Solve $\left(\mathbf{B}-\left(-\frac{1}{2}\right) \mathbf{I}\right) \mathbf{w}=\mathbf{v}_{1}$ for $\mathbf{w}=\binom{w_{1}}{w_{2}}$, i.e. $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\binom{w_{1}}{w_{2}}=\binom{1}{0}$.
Get $w_{2}=1$, i.e. $\mathbf{w}=\binom{w_{1}}{1}$, where $w_{1} \in \mathbb{R}$ can be chosen as we want, e.g. $w_{1}=0$.
Then

$$
\mathbf{x}_{2}(t)=e^{\lambda t}\left(t \mathbf{v}_{1}+\mathbf{w}\right)=e^{-\frac{1}{2} t}\left(t\binom{1}{0}+\binom{0}{1}\right)=e^{-\frac{1}{2} t}\binom{t}{1} .
$$

Example:

Solve $\mathbf{x}^{\prime}=\mathbf{B} \mathbf{x}$ where $\mathbf{B}=\left(\begin{array}{cc}-1 / 2 & 1 \\ 0 & -1 / 2\end{array}\right)$

Solution:

- B has one repeated eigenvalue $\lambda=-1 / 2$ and one linearly independent eigenvector $\mathbf{v}_{1}=\binom{1}{0} . \quad$ This gives one solution $\mathbf{x}_{1}(t)=e^{-\frac{1}{2} t} \mathbf{v}_{1}$.
- Find a second linearly independent solution \mathbf{x}_{2} as follows:

Solve $\left(\mathbf{B}-\left(-\frac{1}{2}\right) \mathbf{I}\right) \mathbf{w}=\mathbf{v}_{1}$ for $\mathbf{w}=\binom{w_{1}}{w_{2}}$, i.e. $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\binom{w_{1}}{w_{2}}=\binom{1}{0}$.
Get $w_{2}=1$, i.e. $\mathbf{w}=\binom{w_{1}}{1}$, where $w_{1} \in \mathbb{R}$ can be chosen as we want, e.g. $w_{1}=0$.
Then

$$
\mathbf{x}_{2}(t)=e^{\lambda t}\left(t \mathbf{v}_{1}+\mathbf{w}\right)=e^{-\frac{1}{2} t}\left(t\binom{1}{0}+\binom{0}{1}\right)=e^{-\frac{1}{2} t}\binom{t}{1} .
$$

- The general solution is

$$
\mathbf{x}(t)=C_{1} \mathbf{x}_{1}(t)+C_{2} \mathbf{x}_{2}(t)=C_{1} e^{-\frac{1}{2} t}\binom{1}{0}+C_{2} e^{-\frac{1}{2} t}\binom{t}{1} .
$$

Example:

Solve $\mathbf{x}^{\prime}=\mathbf{B} \mathbf{x}$ where $\mathbf{B}=\left(\begin{array}{cc}-1 / 2 & 1 \\ 0 & -1 / 2\end{array}\right)$

Solution:

- B has one repeated eigenvalue $\lambda=-1 / 2$ and one linearly independent eigenvector $\mathbf{v}_{1}=\binom{1}{0} . \quad$ This gives one solution $\mathbf{x}_{1}(t)=e^{-\frac{1}{2} t} \mathbf{v}_{1}$.
- Find a second linearly independent solution \mathbf{x}_{2} as follows:

Solve $\left(\mathbf{B}-\left(-\frac{1}{2}\right) \mathbf{I}\right) \mathbf{w}=\mathbf{v}_{1}$ for $\mathbf{w}=\binom{w_{1}}{w_{2}}$, i.e. $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\binom{w_{1}}{w_{2}}=\binom{1}{0}$.
Get $w_{2}=1$, i.e. $\mathbf{w}=\binom{w_{1}}{1}$, where $w_{1} \in \mathbb{R}$ can be chosen as we want, e.g. $w_{1}=0$.
Then

$$
\mathbf{x}_{2}(t)=e^{\lambda t}\left(t \mathbf{v}_{1}+\mathbf{w}\right)=e^{-\frac{1}{2} t}\left(t\binom{1}{0}+\binom{0}{1}\right)=e^{-\frac{1}{2} t}\binom{t}{1} .
$$

- The general solution is

$$
\mathbf{x}(t)=C_{1} \mathbf{x}_{1}(t)+C_{2} \mathbf{x}_{2}(t)=C_{1} e^{-\frac{1}{2} t}\binom{1}{0}+C_{2} e^{-\frac{1}{2} t}\binom{t}{1} .
$$

Remark: A different choice of $w_{2}\left(\right.$ for instance $w_{2}=2$) would give a different \mathbf{x}_{2} but the same general solution (try).

It is no surprise:

It is no surprise:
Section 3.5 is not over...
... to be continued later...

Summary: the general solution of $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$

(\mathbf{A} is a 2×2 matrix with real entries)
The form of the general solution of $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ depends on the eigenvalues λ_{1}, λ_{2} of \mathbf{A} as follows:
(1) λ_{1}, λ_{2} both real and distinct: $\mathbf{x}(t)=C_{1} e^{\lambda_{1} t} \mathbf{v}_{1}+C_{2} e^{\lambda_{2} t} \mathbf{v}_{2}$
where: $\diamond \mathbf{v}_{1}$ is an eigenvector of \mathbf{A} of eigenvalue λ_{1},
$\diamond \mathbf{v}_{2}$ is an eigenvector of \mathbf{A} of eigenvalue λ_{2},
$\diamond C_{1}, C_{2}$ are real constants.
(2) λ_{1}, λ_{2} complex-conjugate \& not real: $\quad \mathbf{x}(t)=C_{1} \operatorname{Re} \mathbf{x}_{1}(t)+C_{2} \operatorname{Im} \mathbf{x}_{1}(t)$
where: $\diamond \mathbf{x}_{1}(t)=e^{\lambda_{1} t} \mathbf{v}_{1}$ and \mathbf{v}_{1} is an eigenvector of \mathbf{A} of eigenvalue λ_{1},
$\diamond C_{1}, C_{2}$ are real constants.
(3) $\lambda_{1}=\lambda_{2}$ both real and $\mathbf{A}=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{1}\end{array}\right)$: same form as in case (1).
(4) $\lambda_{1}=\lambda_{2}$ both real and $\mathbf{A} \neq\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{1}\end{array}\right): \quad \mathbf{x}(t)=C_{1} e^{\lambda_{1} t} \mathbf{v}_{1}+C_{2} e^{\lambda_{1} t}\left(t \mathbf{v}_{1}+\mathbf{w}\right)$
where: $\diamond \mathbf{v}_{1}$ is an eigenvector of \mathbf{A} of eigenvalue λ_{1},
$\diamond \mathbf{w}$ satisfies $\left(\mathbf{A}-\lambda_{1} \mathbf{I}\right) \mathbf{w}=\mathbf{v}_{1}$
$\diamond C_{1}, C_{2}$ are real constants.
Remark: the constant C_{1}, C_{2} are also called free parameters.

Plan (Chapters 3 and 6)

What we have studied:

Systems of two first-order linear differential equations

Definitions, matrix notation, and examples (Section 3.2)
Applications to 2nd order linear differential equations (Section 3.2)
Special case of homogeneous systems with constant coefficients $\mathbf{x}^{\prime}=\mathbf{A x}$:
General properties:

- Principle of superposition (Section 3.3)
- Wronskian and linear independence of solutions (Section 3.3)
- If λ is an eigenvalue of \mathbf{A} with eigenvector \mathbf{v}, then $\mathbf{x}(t)=e^{\lambda t} \mathbf{v}$ is a solution of $\mathbf{x}^{\prime}=\mathbf{A x}$. (Section 3.3)
How to find the general solution of $\mathbf{x}^{\prime}=\mathbf{A x}$:
different situations (Sections 3.3, 3.4, 3.5)

Plan (Chapters 3 and 6)

What we have studied:

Systems of two first-order linear differential equations

Definitions, matrix notation, and examples (Section 3.2)
Applications to 2nd order linear differential equations (Section 3.2)
Special case of homogeneous systems with constant coefficients $\mathbf{x}^{\prime}=\mathbf{A x}$:
General properties:

- Principle of superposition (Section 3.3)
- Wronskian and linear independence of solutions (Section 3.3)
- If λ is an eigenvalue of \mathbf{A} with eigenvector \mathbf{v}, then $\mathbf{x}(t)=e^{\lambda t} \mathbf{v}$ is a solution of $\mathbf{x}^{\prime}=\mathbf{A x}$. (Section 3.3)
How to find the general solution of $\mathbf{x}^{\prime}=\mathbf{A x}$:
different situations (Sections 3.3, 3.4, 3.5)
What comes next?

Plan (Chapters 3 and 6)

What we have studied:

Systems of two first-order linear differential equations

Definitions, matrix notation, and examples (Section 3.2)
Applications to 2nd order linear differential equations (Section 3.2)
Special case of homogeneous systems with constant coefficients $\mathbf{x}^{\prime}=\mathbf{A x}$:
General properties:

- Principle of superposition (Section 3.3)
- Wronskian and linear independence of solutions (Section 3.3)
- If λ is an eigenvalue of \mathbf{A} with eigenvector \mathbf{v}, then $\mathbf{x}(t)=e^{\lambda t} \mathbf{v}$ is a solution of $\mathbf{x}^{\prime}=\mathbf{A x}$. (Section 3.3)
How to find the general solution of $\mathbf{x}^{\prime}=\mathbf{A x}$:
different situations (Sections 3.3, 3.4, 3.5)
What comes next?

Systems of n first-order linear differential equations

(Chapter 6: Sections 6.1, 6.2, 6.3, 6.4)

Plan (Chapters 3 and 6)

What we have studied:

Systems of two first-order linear differential equations

Definitions, matrix notation, and examples (Section 3.2)
Applications to 2nd order linear differential equations (Section 3.2)
Special case of homogeneous systems with constant coefficients $\mathbf{x}^{\prime}=\mathbf{A x}$:
General properties:

- Principle of superposition (Section 3.3)
- Wronskian and linear independence of solutions (Section 3.3)
- If λ is an eigenvalue of \mathbf{A} with eigenvector \mathbf{v}, then $\mathbf{x}(t)=e^{\lambda t} \mathbf{v}$ is a solution of $\mathbf{x}^{\prime}=\mathbf{A x}$. (Section 3.3)
How to find the general solution of $\mathbf{x}^{\prime}=\mathbf{A x}$:
different situations (Sections 3.3, 3.4, 3.5)
What comes next?

Systems of n first-order linear differential equations

(Chapter 6: Sections 6.1, 6.2, 6.3, 6.4)
Geometric methods (direction fields, equilibrium solutions, phase portraits) back to two first-order linear DE with constant coefficients $\mathbf{x}^{\prime}=\mathbf{A x}+\mathbf{b}$
Dynamics and stability of the solutions of $\mathbf{x}^{\prime}=\mathbf{A x}$ (Sections 3.3, 3.4, 3.5).

Plan (Chapters 3 and 6)

What we have studied:

Systems of two first-order linear differential equations

Definitions, matrix notation, and examples (Section 3.2)
Applications to 2nd order linear differential equations (Section 3.2)
Special case of homogeneous systems with constant coefficients $\mathbf{x}^{\prime}=\mathbf{A x}$:
General properties:

- Principle of superposition (Section 3.3)
- Wronskian and linear independence of solutions (Section 3.3)
- If λ is an eigenvalue of \mathbf{A} with eigenvector \mathbf{v}, then $\mathbf{x}(t)=e^{\lambda t} \mathbf{v}$ is a solution of $\mathbf{x}^{\prime}=\mathbf{A x}$. (Section 3.3)
How to find the general solution of $\mathbf{x}^{\prime}=\mathbf{A x}$:
different situations (Sections 3.3, 3.4, 3.5)
What comes next?

Systems of n first-order linear differential equations

(Chapter 6: Sections 6.1, 6.2, 6.3, 6.4)
Geometric methods (direction fields, equilibrium solutions, phase portraits) back to two first-order linear DE with constant coefficients $\mathbf{x}^{\prime}=\mathbf{A x}+\mathbf{b}$
Dynamics and stability of the solutions of $\mathbf{x}^{\prime}=\mathbf{A x}$ (Sections 3.3, 3.4, 3.5).
A brief introduction to nonlinear systems (Section 3.6)

