Section 3.6: A brief introduction to nonlinear systems

Mostly studied so far in Chapter 3: systems of two first order linear DEs, i.e. systems of the form

$$
\begin{aligned}
& \frac{d x}{d t}=p_{11}(t) x+p_{12}(t) y+g_{1}(t) \\
& \frac{d y}{d t}=p_{21}(t) x+p_{22}(t) y+g_{2}(t)
\end{aligned}
$$

which include in particular:

- autonomous (=constant coefficients) systems of two first order linear DEs:

$$
\begin{aligned}
& \frac{d x}{d t}=a_{11} x+a_{12} y+b_{1} \\
& \frac{d y}{d t}=a_{21} x+a_{22} y+b_{2},
\end{aligned}
$$

where $a_{11}, a_{12}, a_{21}, a_{22}, b_{1}, b_{2} \in \mathbb{R}$;

- autonomous homogenous systems of two first order linear DEs:
i.e. autonomous and with $b_{1}=b_{2}=0$.

In this section: nonlinear systems.

- Motivation: most natural phenomena are essentially nonlinear: fluid dynamics, general relativity, chaos, power-flow study, ...
- Difficulties: solutions of non linear systems are complicated, hard to predict and hard to determine.

Definition

A general two-dimensional first order differential system is of the form

$$
\begin{aligned}
& \frac{d x}{d t}=f(t, x, y) \\
& \frac{d y}{d t}=g(t, x, y)
\end{aligned}
$$

where f and g are arbitrary functions.
The system is said to be nonlinear if (at least) one of the functions $f(t, x, y)$ or $g(t, x, y)$ is not of the form $a(t) x+b(t) y+c(t)$, where a, b and c are functions of t.

Definition

A general two-dimensional first order differential system is of the form

$$
\begin{aligned}
& \frac{d x}{d t}=f(t, x, y) \\
& \frac{d y}{d t}=g(t, x, y)
\end{aligned}
$$

where f and g are arbitrary functions.
The system is said to be nonlinear if (at least) one of the functions $f(t, x, y)$ or $g(t, x, y)$ is not of the form $a(t) x+b(t) y+c(t)$, where a, b and c are functions of t. If both f and g do not depend on t, the system is said to be autonomous.

Definition

A general two-dimensional first order differential system is of the form

$$
\begin{aligned}
& \frac{d x}{d t}=f(t, x, y) \\
& \frac{d y}{d t}=g(t, x, y)
\end{aligned}
$$

where f and g are arbitrary functions.
The system is said to be nonlinear if (at least) one of the functions $f(t, x, y)$ or $g(t, x, y)$ is not of the form $a(t) x+b(t) y+c(t)$, where a, b and c are functions of t. If both f and g do not depend on t, the system is said to be autonomous.

A general initial value problem is a general two-dimensional first order differential system together with two initial conditions

$$
x\left(t_{0}\right)=x_{0} \quad \text { and } \quad y\left(t_{0}\right)=y_{0}
$$

Definition

A general two-dimensional first order differential system is of the form

$$
\begin{aligned}
& \frac{d x}{d t}=f(t, x, y) \\
& \frac{d y}{d t}=g(t, x, y)
\end{aligned}
$$

where f and g are arbitrary functions.
The system is said to be nonlinear if (at least) one of the functions $f(t, x, y)$ or $g(t, x, y)$ is not of the form $a(t) x+b(t) y+c(t)$, where a, b and c are functions of t. If both f and g do not depend on t, the system is said to be autonomous.

A general initial value problem is a general two-dimensional first order differential system together with two initial conditions

$$
x\left(t_{0}\right)=x_{0} \quad \text { and } \quad y\left(t_{0}\right)=y_{0}
$$

Vector notation:
$\mathbf{x}^{\prime}=\mathbf{f}(t, \mathbf{x})$ for a general system and $\mathbf{x}=\binom{x}{y}$.
or $\mathbf{x}^{\prime}=\mathbf{f}(\mathbf{x})$ if the system is autonomous.
Initial condition: $\mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0}=\binom{x_{0}}{y_{0}}$.

Theorem (Theorem 3.6.1)

Consider a differential system

$$
\binom{x^{\prime}}{y^{\prime}}=\binom{f(t, x, y)}{g(t, x, y)}
$$

Let R be the open rectangular cuboid R of the txy-space defined by

$$
\alpha<t<\beta, \alpha_{1}<x<\beta_{1}, \alpha_{2}<y<\beta_{2}
$$

and let $\left(t_{0}, x_{0}, y_{0}\right)$ be a fixed element in R.
Suppose that the functions f and g, as well as their partial derivatives $\partial f / \partial x, \partial f / \partial y$, $\partial g / \partial x$ and $\partial g / \partial y$ are all continuous in R.
Then there exists an open interval $I=\left(t_{0}-h ; t_{0}+h\right)$ in which there exists a unique solution of the given system with initial condition $x\left(t_{0}\right)=x_{0}$ and $y\left(t_{0}\right)=y_{0}$.

General autonomous systems of two DEs

Consider an autonomous system

$$
\mathbf{x}^{\prime}=\mathbf{f}(\mathbf{x})
$$

with $\mathbf{f}(\mathbf{x})=\binom{f(x, y)}{g(x, y)}$.

General autonomous systems of two DEs

Consider an autonomous system

$$
\mathbf{x}^{\prime}=\mathbf{f}(\mathbf{x})
$$

with $\mathbf{f}(\mathbf{x})=\binom{f(x, y)}{g(x, y)}$.

- The equilibrium solutions or critical points are those solutions $\mathbf{x}=\mathbf{x}(t)$ such that $\mathbf{x}^{\prime}=\mathbf{0}$, i.e. the solutions to $\mathbf{f}(\mathbf{x})=\mathbf{0}$.
In terms of component functions: the $\mathbf{x}=\binom{x}{y}$ such that $\left\{\begin{array}{l}f(x, y)=0 \\ g(x, y)=0\end{array}\right.$

General autonomous systems of two DEs

Consider an autonomous system

$$
\mathbf{x}^{\prime}=\mathbf{f}(\mathbf{x})
$$

with $\mathbf{f}(\mathbf{x})=\binom{f(x, y)}{g(x, y)}$.

- The equilibrium solutions or critical points are those solutions $\mathbf{x}=\mathbf{x}(t)$ such that $\mathbf{x}^{\prime}=\mathbf{0}$, i.e. the solutions to $\mathbf{f}(\mathbf{x})=\mathbf{0}$.
In terms of component functions: the $\mathbf{x}=\binom{x}{y}$ such that $\left\{\begin{array}{l}f(x, y)=0 \\ g(x, y)=0\end{array}\right.$
- Study of solutions and their trajectories in the phase plane:

$$
\frac{g(x, y)}{f(x, y)}=\frac{d y / d t}{d x / d t}=\frac{d y}{d x}
$$

can be viewed as a first order differential equation where the unknown is the function y and the independent variable is the function x.
We can solve this 1st order non-linear autonomous DE if it is exact, separable, Bernoulli or homogenous...
If solutions can be found, they are usually in implicit form $H(x, y)=C$, where C is a constant.

Example:

Consider the system:

$$
\binom{x^{\prime}}{y^{\prime}}=\binom{-x y}{x^{2}}
$$

- Find all the critical points.
- Find an equation of the form $H(x, y)=c$ satisfied by the solutions of the given system.
- Plot the phase portrait, level curves of H, and the trajectory that passes through the point $(x, y)=(2,0)$.

