
Section 4.2: 2nd order linear homogeneous equations

With every second-order linear DE in standard form we can associate a system of
first-order DE’s.

Goal of this section:
To transfer to second-order linear DE

y ′′ + p(t)y ′ + q(t)y = 0

some notions and properties we studied for the corresponding system, namely:

Theorems on existence and uniqueness of the solutions

Principle of superposition (for homogenous DE’s)

Wronskian and linear independence of solutions (for homogenous DE’s)

The general solution (for homogenous DE’s)

We first recall the correspondence between second order DE’s and systems of
first-order DE’s.
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From Section 3.2: every 2nd order DE can be converted into a system of two first
order DE’s.

In the linear (nonhomogenous) case:

y ′′ + p(t)y ′ + q(t)y = g(t)

the corresponding system is obtained by introducing the state variables:

x1 = y and x2 = y ′

We obtain the system of two linear (nonhomogenous) first order DE’s:{
x ′

1 = x2

x ′
2 = −q(t)x1 − p(t)x2 + g(t) .

An initial condition: y(t0) = y0, y ′(t0) = y1

becomes: x1(t0) = y0, x2(t0) = y1.

Matrix notation:

x′ =

(
0 1
−q(t) −p(t)

)
x +

(
0

g(t)

)
where x =

(
x1

x2

)
=

(
y
y ′

)

with initial condition x(t0) = x0 =

(
y0

y1

)
.
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From Theorem 3.2.1:

Theorem (Theorem 4.2.1)
Consider the second order linear differential equation

y ′′ + p(t)y ′ + q(t)y = g(t)

Suppose the functions p, q and g are continuous on some open interval I.
Let t0 be an element of I.

Then there exists a unique solution of the DE satisfying the initial condition y(t0) = y0

and y ′(t0) = y1, where y0 and y1 are any given numbers.

Example:
Determine the longest interval in which the initial value problem

(t2 − 1)y ′′ − 3ty ′ + 4y = sin(t) with y(0) = 2, y ′(0) = 1

have a twice differentiable solution.
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Linear operators and 2nd order linear homogenous
DEs

Definition
The operator of differentiation is the map D : y 7→ D[y ] defined by

D[y ](t) =
dy
dt

(t) for all t .

The operator of multiplication by the function p is the operator p : y 7→ p[y ]
defined by

p[y ](t) = p(t)y(t) for all t .

Both D and p are linear operators, that is for all scalars c1, c2 and functions y1, y2 we
have:

D[c1y1 + c2y2] = c1Dy1 + c2Dy2

p[c1y1 + c2y2] = c1py1 + c2py2

Example: Let y be twice differentiable on the interval I. Then D2[y ] = D[D[y ]] is the

function with value at t ∈ I given by D2[y ](t) = D[D[y ]](t) =
d
dt

(dy
dt

)
(t) =

d2y
dt2 (t).
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Let p, q two continuous functions on the interval I and set

L = D2 + pD + q =
d2

dt2 + p
d
dt

+ q

We can apply L to any function y so that y ′, y ′′ exist on I.
If y , y ′, y ′′ are continuous on I then

L[y ] = y ′′ + py ′ + qy

is a continuous function on I.

The value of L[y ] at t ∈ I is

L[y ](t) = y ′′(t) + p(t)y ′(t) + q(t)y .

The homogeneous linear differential equation y ′ + p(t)y ′ + q(t)y = 0 can be rewritten
as L[y ] = 0.
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Principle of superposition for linear homogeneous DEs

Theorem (Theorem 4.2.2, Corollary 4.2.3)
L = D2 + pD + q is a linear operator, i.e. for every twice differentiable function y1, y2

on I and every constants c1, c2 we have

L[c1y1 + c2y2] = c1L[y1] + c2L[y2]

If y1 and y2 are two solutions of the homogeneous differential equation L[y ] = 0, so is
any linear combination c1y1 + c2y2 of y1 and y2 (where c1 and c2 are arbitrary
constants):

L[c1y1 + c2y2] = c1L[y1] + c2L[y2] = 0 .
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Wronskian and fundamental solutions
Recall from Sections 3.3 and 6.2: the Wronskian of two vector functions

x1(t) =
(

x11(t)
x21(t)

)
and x2 =

(
x12(t)
x22(t)

)
on the interval I is the function W [x1, x2] on I defined by

W [x1, x2](t) =
∣∣∣∣x11(t) x12(t)
x21(t) x22(t)

∣∣∣∣ .
Theorem (Theorem 6.2.6, see also Theorem 4.2.6)
Let x1 and x2 be two solutions of the homogeneous system of two linear DE
x′ = P(t)x.

If the Wronskian W [x1, x2] is nonzero on the interval I, then x1 and x2 form a
fundamental set of solutions.

The general solution of x′ = P(t)x on I is

x(t) = c1x1(t) + c2x2(t)

where c1, c2 are arbitrary constants.

An initial condition x(t0) = x0 determines the constants c1 and c2 uniquely.
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We can apply Theorem 6.2.6 (=4.2.6) to the system

x′ =

(
0 1
−q(t) −p(t)

)
x

associated with the 2nd order homogenous linear differential equation

y ′′ + p(t)y ′ + q(t)y = 0

Recall the change of variables: x1 = y and x2 = y ′, so that x =

(
x1

x2

)
.

The functions y1 and y2 are solutions of y ′′ + p(t)y ′ + q(t)y = 0 if and only if the

vector functions x1 =

(
y1

y ′
1

)
and x2 =

(
y2

y ′
2

)
are solutions of the associated system.

Moreover: W [x1, x2](t) =
∣∣∣∣y1(t) y2(t)
y ′

1(t) y ′
2(t)

∣∣∣∣ .
This motivates the following definition:

Definition
The Wronskian W [y1, y2] of y1, y2 is the function defined for t ∈ I by

W [y1, y2](t) =
∣∣∣∣y1(t) y2(t)
y ′

1(t) y ′
2(t)

∣∣∣∣ .
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Theorem 6.2.6 (=4.2.6) applied to the system of DE’s associated with the 2nd order
homogenous linear differential equation

y ′′ + p(t)y ′ + q(t)y = 0

yields the following theorem.

Theorem (Theorem 4.2.7)
Suppose that y1 and y2 are two solutions of y ′′ + p(t)y ′ + q(t)y = 0.

If the Wronskian W [y1, y2] of y1 and y2 is nonzero on the interval I, then y1 and y2 form
a fundamental set of solutions.

The general solution is given by

y(t) = c1y1(t) + c2y2(t)

where c1, c2 are arbitrary constants.

Two initial conditions y(t0) = y0 and y ′(t0) = y1 determine the constants c1, c2

uniquely.
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W [y1, y2](t) =
∣∣∣∣y1(t) y2(t)
y ′

1(t) y ′
2(t)

∣∣∣∣ .
Examples:

Find the Wronskian of the functions x and xex .

If the Wronskian W of f and g is 3e2t , and if f (t) = e4t , find the function g(t).
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The Wronskian of two solutions y1, y2 is a function of t .

As defined above, it can be computed once we know the functions y1, y2 explicitly.

It turns out that it can be computed directly from the coefficients of the differential
equation.

Theorem (Theorem 4.2.8, Corollary 4.2.9, Abel Theorem)
The Wronskian W of two solutions of the system x′ = P(t)x is given by

W (t) = c exp
∫ (

p11(t) + p22(t)
)
dt

for some constant number c depending on the solutions.
Here: p11(t) + p22(t) = traceP(t)
The Wronskian of two solutions of the equation y ′′ + p(t)y ′ + q(t)y = 0 is given by

W (t) = c exp
(
−
∫

p(t)dt
)

where c is a constant depending on the solutions.

In particular, the Wronskian is either never zero (for linearly independent solutions) or
always zero (for linearly dependent solutions) in the open interval I.
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