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Improper integrals

Definition
Suppose a ∈ R and f is a function defined on the interval [a,+∞).

The improper integral of f from a to +∞, denoted
∫ +∞

a
f (t) dt , is defined as the limit

∫ +∞

a
f (t) dt = lim

A→+∞

∫ A

a
f (t) dt

If
∫ A

a
f (t) dt exists for each A > a and the above limit exists and is finite, then we

say that the improper integral converges.

Otherwise, we say that the improper integral diverges.
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Examples:

Compute
∫ +∞

1

1
t

dt .

∫ +∞

1

1
t

dt = lim
A→+∞

∫ A

1

1
t

dt = lim
A→+∞

(ln(A)− ln(1)) = +∞.

Conclusion: the improper integral diverges.

Compute
∫ +∞

1

1
tp dt , where p is a real constant 6= 1.

∫ +∞

1
t−p dt = lim

A→+∞

∫ A

1
t−p dt = lim

A→+∞

[ 1
1− p

t1−p
]t=A

t=1
= lim

A→+∞

1
1− p

(A1−p − 1)

We have limA→+∞ A1−p =

{
+∞ if 1− p > 0
0 if 1− p < 0

.

Conclusion:∫ +∞

1
t−p dt =

{
+∞ if p < 1 ⇒ the improper integral diverges
−1

1−p = 1
p−1 if p > 1 ⇒ the improper integral converge to 1

p−1
.
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Examples (continued):

Compute
∫ +∞

0
e−st dt , where s is a real number, s > 0.

We have ∫ +∞

0
e−st dt = lim

A→+∞

∫ A

0
e−st dt = lim

A→+∞

[
−

1
s

e−st
]t=A

t=0

= lim
A→+∞

(
−

1
s

e−sA +
1
s

)
=

1
s

Conclusion: the improper integral converges to the value
1
s

.

4 / 14



Examples (continued):

Compute
∫ +∞

0
e−st dt , where s is a real number, s > 0.

We have ∫ +∞

0
e−st dt = lim

A→+∞

∫ A

0
e−st dt

= lim
A→+∞

[
−

1
s

e−st
]t=A

t=0

= lim
A→+∞

(
−

1
s

e−sA +
1
s

)
=

1
s

Conclusion: the improper integral converges to the value
1
s

.

4 / 14



Examples (continued):

Compute
∫ +∞

0
e−st dt , where s is a real number, s > 0.

We have ∫ +∞

0
e−st dt = lim

A→+∞

∫ A

0
e−st dt = lim

A→+∞

[
−

1
s

e−st
]t=A

t=0

= lim
A→+∞

(
−

1
s

e−sA +
1
s

)
=

1
s

Conclusion: the improper integral converges to the value
1
s

.

4 / 14



Examples (continued):

Compute
∫ +∞

0
e−st dt , where s is a real number, s > 0.

We have ∫ +∞

0
e−st dt = lim

A→+∞

∫ A

0
e−st dt = lim

A→+∞

[
−

1
s

e−st
]t=A

t=0

= lim
A→+∞

(
−

1
s

e−sA +
1
s

)

=
1
s

Conclusion: the improper integral converges to the value
1
s

.

4 / 14



Examples (continued):

Compute
∫ +∞

0
e−st dt , where s is a real number, s > 0.

We have ∫ +∞

0
e−st dt = lim

A→+∞

∫ A

0
e−st dt = lim

A→+∞

[
−

1
s

e−st
]t=A

t=0

= lim
A→+∞

(
−

1
s

e−sA +
1
s

)
=

1
s

Conclusion: the improper integral converges to the value
1
s

.

4 / 14



Examples (continued):

Compute
∫ +∞

0
e−st dt , where s is a real number, s > 0.

We have ∫ +∞

0
e−st dt = lim

A→+∞

∫ A

0
e−st dt = lim

A→+∞

[
−

1
s

e−st
]t=A

t=0

= lim
A→+∞

(
−

1
s

e−sA +
1
s

)
=

1
s

Conclusion: the improper integral converges to the value
1
s

.

4 / 14



The Laplace transform
Definition
Let f be a function defined on [0,+∞). The Laplace transform of f is the function F
defined by

F (s) =
∫ +∞

0
e−st f (t) dt

for all values s for which this improper integral converges.

The Laplace transform of f will also be denoted by L{f}.

Remarks:
The Laplace transform F (or L{f}) of f is a function defined on the set D of all
values s ∈ R for which the defining improper integral converges.
Notational conventions:
� t (representing time) is the variable of the given function f
� s is the variable of the Laplace transform F or L{f} of f .
Departing from the usual functional notation, one often writes “F (s) = L{f (t)}”.
This means: the function F (which is function of s) is the Laplace transform of f
(which is a function of t).
The proper (but too long to write) notation would be: “given f = f (t), consider
F (s) = L{f}(s).”
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Examples:
Let f (t) = eat , t ≥ 0 and a ∈ R. Then

L{f}(s) =

∫ ∞
0

eate−st dt = lim
A→+∞

∫ A

0
e(a−s)t dt = lim

A→+∞

[ 1
a− s

e(a−s)t
]t=A

t=0

= lim
A→+∞

1
a− s

(
e(a−s)A − 1

)
=

{
+∞ if s ≤ a

1
s−a if s > a

Therefore: the Laplace transform L{f} of f (t) = eat , with a ∈ R, is a function

defined on (a,+∞). Moreover, L{f}(s) = 1
s − a

for s > a.

On a table of Laplace transforms, the above is usually shortly written as follows:

L{eat} = 1
s − a

, s > a .

For a = 0, we deduce the Laplace transform of the constant function f (t) = 1 for
all t ≥ 0:

L{1} = 1
s
, s > 0 .
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Examples (continued):

If we replace a ∈ R with a + ib ∈ C (where a, b ∈ R), then

lim
A→+∞

e(a+ib−s)A =

lim
A→+∞

e(a−s)AeibA

{
does not exist if s ≤ a
= 0 if s > a

This gives, with the same computations as in the case a ∈ R:

L{e(a+ib)t}(s) = 1
s − a− ib

, s > a

Remark: This is often written on a table omitting the “s” variable on the RHS:

L{e(a+ib)t} = 1
s − a− ib

, s > a .
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Theorem (Theorem 5.1.2)
Suppose that:

f1 is a function whose Laplace transform exists on the interval (a1,+∞),

f2 is a function whose Laplace transform exists on the interval (a2,+∞).

Then, for any (real or complex) constants c1, c2, the Laplace transform of c1f1 + c2f2
exists on the interval (max{a1, a2},+∞), and satisfies

L{c1f1 + c2f2} = c1L{f1}+ c2L{f2}

In particular, the Laplace transform is a linear operator.

Example: Find the Laplace transform of f (t) = sin(bt).

Recall that sin(bt) =
eibt − e−ibt

2i
. For s > 0 we have L{e±ibt}(s) = 1

s ∓ ib
.

Hence:

L{sin(bt)}(s) = 1
2i
L{eibt}(s)− 1

2i
L{e−ibt}(s) =

1
2i

1
s − ib

− 1
2i

1
s + ib

=
1
2i

(s + ib)− (s − ib)
(s − ib)(s + ib)

=
b

s2 + b2
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Piecewise continuous functions

Definition (Definition 5.1.3)
A function f is said to be piecewise continuous on an interval [α, β] if this interval
can be partitioned by a finite number points α = t0 < t1 < · · · < tn = β so that:

1. f is continuous on each open subinterval (tj−1, tj), and

2. the limits limt→t+j−1
f (t) and limt→t−j

f (t) exist and are finite for all j = 1, . . . , n

Example:

f (t) =


t + 1 if t ∈ [−1, 0)
1/2 if t = 0
t2 if t ∈ (0, 1)
0 if t = 1

Partition of [−1, 1] by −1 < 0 < 1
f continuous on (−1, 0) ∪ (0, 1)
The limits:
limt→−1+ f (t) = 0 , limt→0− f (t) = 1 ,
limt→0+ f (t) = 0 , limt→1− f (t) = 1
exist and are finite.
Thus: f is piecewise continuous on [−1, 1]
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Example:

f (t) =

{
1 if t ∈ [−1, 0]
1/t if t ∈ (0, 1]

f is defined for all t ∈ [−1, 1] and continuous on (−1, 0) ∪ (0, 1).
But: limt→0+ f (t) = limt→0+ 1/t = +∞ is not finite.
So f is not piecewise continuous.

Remarks:

f is piecewise continuous on [α, β] provided it is continuous at all but possibly
finitely many points of [α, β], at each of which f has a jump discontinuity.
continuous⇒ piecewise continuous, but continuous : piecewise continuous
A similar definition for a piecewise continuous on an open interval (α, β):
everything is as above, but you need not check the existence of the limits
limt→α+ f (t) and limt→β− f (t).

This applies in particular if α = −∞ or β = +∞.

Example: f piecewise continuous on (−∞,∞):

f (t) =


−1 if t < 0
0 if t = 0
1 if t > 0

Partition of (−∞,∞) by −∞ < 0 < +∞
f continuous on (−∞, 0) ∪ (0,+∞)

The limits: limt→0− f (t) = −1 , limt→0+ f (t) = 1
exist and are finite.
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Laplace Transform of a piecewise continuous function
Piecewise continuous⇒ integrable on every finite interval [α, β].

Example:

Compute the Laplace transform of f (t) =

{
2t if 0 ≤ t < 1
1 if t ≥ 1

Remark: f is piecewise continuous (but not continuous) on [0,+∞).

L{f}(s) =
∫ +∞

0
f (t)e−st dt = 2

∫ 1

0
te−st dt +

∫ +∞

1
e−st dt

One computes:∫ 1

0
te−st dt =

−e−s(s + 1) + 1
s

if s 6= 0∫ +∞

1
e−st dt = lim

A→+∞

∫ A

1
e−st dt = lim

A→+∞

[−1
s

e−st
]t=A

t=1

= lim
A→+∞

−1
s

(
e−sA − e−s

)
=

e−s

s
if s > 0.

Therefore:

L{f}(s) = 2
−e−s(s + 1) + 1

s
+

e−s

s
=
−e−s(s + 2) + 2

s
if s > 0.
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Tests of convergence of improper integrals

There are integrals, and hence improper integrals, that cannot be evaluated.
We may still be able to determine whether an improper integral converges or not.
This is done by comparing it to an improper integral we can compute,
e.g. of ect or t−p.

If f is a piecewise continuous function on [a,+∞), then
∫ M

a f (t) dt is a finite
number for all M ≥ a.

The convergence/divergence of the improper integral
∫∞

a f (t) dt can be checked
from the convergence/divergence of the improper integral

∫∞
M f (t) dt .

Theorem (Theorem 5.1.4)
Let a and M be two real numbers so that M ≥ a. Suppose f is piecewise continuous
for t ≥ a.

If |f (t)| ≤ g(t) for t ≥ M and if
∫ +∞

M g(t) dt converges, then
∫ +∞

a f (t) dt
converges.

If f (t) ≥ g(t) ≥ 0 for t ≥ M, and if
∫ +∞

M g(t) dt diverges then
∫ +∞

a f (t) dt also
diverges.
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Functions of exponential order
Definition (Definition 5.1.5)
A function f is of exponential order (as t → +∞) if there exist real constants M ≥ 0,
K > 0 and a such that

|f (t)| ≤ Keat for t ≥ M .

Remarks:
The choice of constants M,K , a is not unique.

To check if f is of exponential order, check if there is a so that
|f (t)|
eat is bounded

for all large t .

Example:

f (t) = et is of exponential order. [Take for instance a = 1, K = 1, M = 0]

f (t) = t2 is of exponential order. [Since et dominates t2 for t →∞ we can take
e.g. a = 1, K = 1, M = 0.]

f (t) = et2
is not of exponential order. [We prove that et2

eat is not bounded for

t → +∞ for every a ∈ R. Indeed: et2

eat = et(t−a). For all t > a + 1, the exponent is
t(t − a) > t . So et(t−a) > et , which is not bounded for positive large values of t .]
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Existence of Laplace transforms

Theorem (Theorem 5.1.6, Corollary 5.1.7)
Suppose:

f is piecewise continuous on [0,A] for any positive real number A

f is of exponential order, that is |f (t)| ≤ Keat for t ≥ M.

Then:

(1) the Laplace transform of f exists for s > a,

(2) there exists a positive constant L such that

|L{f}(s)| ≤ L/s for all s sufficiently large.

In particular: lim
s→+∞

L{f}(s) = 0.
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