Section 5.2: Properties of the Laplace transform

Main Topics:

- Laplace transform of $e^{c t} f$,
- Laplace transform of derivatives
- Laplace transform of $t^{n} f$.
- Laplace transform of differential equations.

Laplace transform of $e^{c t} f$

Recall that the Laplace transform of a function f is defined by

$$
\mathcal{L}\{f\}(s)=\int_{0}^{+\infty} e^{-s t} f(t), d t
$$

for all values $s \in \mathbb{R}$ for which this integral converges.

Laplace transform of $e^{c t} f$

Recall that the Laplace transform of a function f is defined by

$$
\mathcal{L}\{f\}(s)=\int_{0}^{+\infty} e^{-s t} f(t), d t
$$

for all values $s \in \mathbb{R}$ for which this integral converges.
Theorem (Theorem 5.2.1)
If the Laplace transform of f exists for $s>a$, then one has

$$
\mathcal{L}\left\{e^{e t} f\right\}(s)=\mathcal{L}\{f\}(s-c) \quad \text { for } s>a+c
$$

for a constant c.

Laplace transform of $e^{c t} f$

Recall that the Laplace transform of a function f is defined by

$$
\mathcal{L}\{f\}(s)=\int_{0}^{+\infty} e^{-s t} f(t), d t
$$

for all values $s \in \mathbb{R}$ for which this integral converges.

Theorem (Theorem 5.2.1)

If the Laplace transform of f exists for $s>a$, then one has

$$
\mathcal{L}\left\{e^{c t} f\right\}(s)=\mathcal{L}\{f\}(s-c) \quad \text { for } s>a+c
$$

for a constant c.
Example: Find the Laplace transform of $g(t)=e^{-3 t} \sin (2 t)$.
[Recall: the Laplace transform of $f(t)=\sin (b t)$ is $\mathcal{L}\{f\}(s)=\frac{b}{s^{2}+b^{2}}$ for $s>0$.]

Laplace transform of $e^{c t} f$

Recall that the Laplace transform of a function f is defined by

$$
\mathcal{L}\{f\}(s)=\int_{0}^{+\infty} e^{-s t} f(t), d t
$$

for all values $s \in \mathbb{R}$ for which this integral converges.

Theorem (Theorem 5.2.1)

If the Laplace transform of f exists for $s>a$, then one has

$$
\mathcal{L}\left\{e^{c t} f\right\}(s)=\mathcal{L}\{f\}(s-c) \quad \text { for } s>a+c
$$

for a constant c.
Example: Find the Laplace transform of $g(t)=e^{-3 t} \sin (2 t)$.
[Recall: the Laplace transform of $f(t)=\sin (b t)$ is $\mathcal{L}\{f\}(s)=\frac{b}{s^{2}+b^{2}}$ for $s>0$.]
$\mathcal{L}\{g\}(s)=\int_{0}^{+\infty} e^{-s t} e^{-3 t} \sin (2 t) d t$

Laplace transform of $e^{c t} f$

Recall that the Laplace transform of a function f is defined by

$$
\mathcal{L}\{f\}(s)=\int_{0}^{+\infty} e^{-s t} f(t), d t
$$

for all values $s \in \mathbb{R}$ for which this integral converges.

Theorem (Theorem 5.2.1)

If the Laplace transform of f exists for $s>a$, then one has

$$
\mathcal{L}\left\{e^{c t} f\right\}(s)=\mathcal{L}\{f\}(s-c) \quad \text { for } s>a+c
$$

for a constant c.
Example: Find the Laplace transform of $g(t)=e^{-3 t} \sin (2 t)$.
[Recall: the Laplace transform of $f(t)=\sin (b t)$ is $\mathcal{L}\{f\}(s)=\frac{b}{s^{2}+b^{2}}$ for $s>0$.]
$\mathcal{L}\{g\}(s)=\int_{0}^{+\infty} e^{-s t} e^{-3 t} \sin (2 t) d t=\int_{0}^{+\infty} e^{-(s+3) t} \sin (2 t) d t$

Laplace transform of $e^{c t} f$

Recall that the Laplace transform of a function f is defined by

$$
\mathcal{L}\{f\}(s)=\int_{0}^{+\infty} e^{-s t} f(t), d t
$$

for all values $s \in \mathbb{R}$ for which this integral converges.

Theorem (Theorem 5.2.1)

If the Laplace transform of f exists for $s>a$, then one has

$$
\mathcal{L}\left\{e^{c t} f\right\}(s)=\mathcal{L}\{f\}(s-c) \quad \text { for } s>a+c
$$

for a constant c.
Example: Find the Laplace transform of $g(t)=e^{-3 t} \sin (2 t)$.
[Recall: the Laplace transform of $f(t)=\sin (b t)$ is $\mathcal{L}\{f\}(s)=\frac{b}{s^{2}+b^{2}}$ for $s>0$.]
$\mathcal{L}\{g\}(s)=\int_{0}^{+\infty} e^{-s t} e^{-3 t} \sin (2 t) d t=\int_{0}^{+\infty} e^{-(s+3) t} \sin (2 t) d t=\mathcal{L}\{\sin (2 t)\}(s+3)$

Laplace transform of $e^{c t} f$

Recall that the Laplace transform of a function f is defined by

$$
\mathcal{L}\{f\}(s)=\int_{0}^{+\infty} e^{-s t} f(t), d t
$$

for all values $s \in \mathbb{R}$ for which this integral converges.

Theorem (Theorem 5.2.1)

If the Laplace transform of f exists for $s>a$, then one has

$$
\mathcal{L}\left\{e^{c t} f\right\}(s)=\mathcal{L}\{f\}(s-c) \quad \text { for } s>a+c
$$

for a constant c.
Example: Find the Laplace transform of $g(t)=e^{-3 t} \sin (2 t)$.
[Recall: the Laplace transform of $f(t)=\sin (b t)$ is $\mathcal{L}\{f\}(s)=\frac{b}{s^{2}+b^{2}}$ for $s>0$.]
$\mathcal{L}\{g\}(s)=\int_{0}^{+\infty} e^{-s t} e^{-3 t} \sin (2 t) d t=\int_{0}^{+\infty} e^{-(s+3) t} \sin (2 t) d t=\mathcal{L}\{\sin (2 t)\}(s+3)$
$=\frac{2}{(s+3)^{2}+4} \quad$ for $s+3>0$, i.e. $s>-3$.

Laplace Transform of derivatives

Recall (Definition 5.1.5) that g is of exponential order if there exist real constants $M \geq 0, K>0$ and a such that $|g(t)| \leq K e^{a t}$ for $t \geq M$.

Laplace Transform of derivatives

Recall (Definition 5.1.5) that g is of exponential order if there exist real constants $M \geq 0, K>0$ and a such that $|g(t)| \leq K e^{a t}$ for $t \geq M$.

Theorem (Theorem 5.2.2)

Suppose that:

- f is continuous on the interval $0 \leq t \leq A$ for all A,
- f^{\prime} is piecewise continuous on the interval $0 \leq t \leq A$ for all A,
- f and f^{\prime} are of exponential order with exponent a.

Then the Laplace transform of f^{\prime} exists for $s>a$ and is given by

$$
\mathcal{L}\left\{f^{\prime}\right\}(s)=s \mathcal{L}\{f\}(s)-f(0)
$$

Laplace Transform of derivatives

Recall (Definition 5.1.5) that g is of exponential order if there exist real constants $M \geq 0, K>0$ and a such that $|g(t)| \leq K e^{a t}$ for $t \geq M$.

Theorem (Theorem 5.2.2)

Suppose that:

- f is continuous on the interval $0 \leq t \leq A$ for all A,
- f^{\prime} is piecewise continuous on the interval $0 \leq t \leq A$ for all A,
- f and f^{\prime} are of exponential order with exponent a.

Then the Laplace transform of f^{\prime} exists for $s>a$ and is given by

$$
\mathcal{L}\left\{f^{\prime}\right\}(s)=s \mathcal{L}\{f\}(s)-f(0)
$$

Example:

- Compute the Laplace transform of $g(t)=\cos (b t)$ where $b \in \mathbb{R}, b \neq 0$.
[Recall that $\mathcal{L}\left\{e^{ \pm i b t}\right\}(s)=\frac{1}{s \mp i b}$ for $s>0$.]
- Verify the formula $\mathcal{L}\left\{f^{\prime}\right\}(s)=s \mathcal{L}\{f\}(s)-f(0)$ for $f(t)=\sin (b t)$.
- Compute the Laplace transform of $g(t)=\cos (b t)$ where $b \in \mathbb{R}, b \neq 0$. [Recall that $\mathcal{L}\left\{e^{ \pm i b t}\right\}(s)=\frac{1}{s \mp i b}$ for $s>0$.]
- Compute the Laplace transform of $g(t)=\cos (b t)$ where $b \in \mathbb{R}, b \neq 0$.
[Recall that $\mathcal{L}\left\{e^{ \pm i b t}\right\}(s)=\frac{1}{s \mp i b}$ for $s>0$.]

$$
\mathcal{L}\{\cos (b t)\}(s)=\mathcal{L}\left\{\frac{e^{i b t}+e^{-i b t}}{2}\right\}(s)
$$

- Compute the Laplace transform of $g(t)=\cos (b t)$ where $b \in \mathbb{R}, b \neq 0$. [Recall that $\mathcal{L}\left\{e^{ \pm i b t}\right\}(s)=\frac{1}{s \mp i b}$ for $s>0$.]

$$
\begin{aligned}
\mathcal{L}\{\cos (b t)\}(s) & =\mathcal{L}\left\{\frac{e^{i b t}+e^{-i b t}}{2}\right\}(s) \\
& =\frac{1}{2} \mathcal{L}\left\{e^{i b t}\right\}(s)+\frac{1}{2} \mathcal{L}\left\{e^{-i b t}\right\}(s)
\end{aligned}
$$

- Compute the Laplace transform of $g(t)=\cos (b t)$ where $b \in \mathbb{R}, b \neq 0$. [Recall that $\mathcal{L}\left\{e^{ \pm i b t}\right\}(s)=\frac{1}{s \mp i b}$ for $s>0$.]

$$
\begin{aligned}
\mathcal{L}\{\cos (b t)\}(s) & =\mathcal{L}\left\{\frac{e^{i b t}+e^{-i b t}}{2}\right\}(s) \\
& =\frac{1}{2} \mathcal{L}\left\{e^{i b t}\right\}(s)+\frac{1}{2} \mathcal{L}\left\{e^{-i b t}\right\}(s) \\
& =\frac{1}{2} \frac{1}{s-i b}+\frac{1}{2} \frac{1}{s+i b} \quad \text { for } s>0
\end{aligned}
$$

- Compute the Laplace transform of $g(t)=\cos (b t)$ where $b \in \mathbb{R}, b \neq 0$. [Recall that $\mathcal{L}\left\{e^{ \pm i b t}\right\}(s)=\frac{1}{s \mp i b}$ for $s>0$.]

$$
\begin{aligned}
\mathcal{L}\{\cos (b t)\}(s) & =\mathcal{L}\left\{\frac{e^{i b t}+e^{-i b t}}{2}\right\}(s) \\
& =\frac{1}{2} \mathcal{L}\left\{e^{i b t}\right\}(s)+\frac{1}{2} \mathcal{L}\left\{e^{-i b t}\right\}(s) \\
& =\frac{1}{2} \frac{1}{s-i b}+\frac{1}{2} \frac{1}{s+i b} \quad \text { for } s>0 \\
& =\frac{1}{2} \frac{(s+i b)+(s-i b)}{(s-i b)(s+i b)}=\frac{s}{s^{2}+b^{2}}
\end{aligned}
$$

- Compute the Laplace transform of $g(t)=\cos (b t)$ where $b \in \mathbb{R}, b \neq 0$. [Recall that $\mathcal{L}\left\{e^{ \pm i b t}\right\}(s)=\frac{1}{s \mp i b}$ for $s>0$.]

$$
\begin{aligned}
\mathcal{L}\{\cos (b t)\}(s) & =\mathcal{L}\left\{\frac{e^{i b t}+e^{-i b t}}{2}\right\}(s) \\
& =\frac{1}{2} \mathcal{L}\left\{e^{i b t}\right\}(s)+\frac{1}{2} \mathcal{L}\left\{e^{-i b t}\right\}(s) \\
& =\frac{1}{2} \frac{1}{s-i b}+\frac{1}{2} \frac{1}{s+i b} \quad \text { for } s>0 \\
& =\frac{1}{2} \frac{(s+i b)+(s-i b)}{(s-i b)(s+i b)}=\frac{s}{s^{2}+b^{2}}
\end{aligned}
$$

- Verify the formula $\mathcal{L}\left\{f^{\prime}\right\}(s)=s \mathcal{L}\{f\}(s)-f(0)$ for $f(t)=\sin (b t)$.
- Compute the Laplace transform of $g(t)=\cos (b t)$ where $b \in \mathbb{R}, b \neq 0$. [Recall that $\mathcal{L}\left\{e^{ \pm i b t}\right\}(s)=\frac{1}{s \mp i b}$ for $s>0$.]

$$
\begin{aligned}
\mathcal{L}\{\cos (b t)\}(s) & =\mathcal{L}\left\{\frac{e^{i b t}+e^{-i b t}}{2}\right\}(s) \\
& =\frac{1}{2} \mathcal{L}\left\{e^{i b t}\right\}(s)+\frac{1}{2} \mathcal{L}\left\{e^{-i b t}\right\}(s) \\
& =\frac{1}{2} \frac{1}{s-i b}+\frac{1}{2} \frac{1}{s+i b} \quad \text { for } s>0 \\
& =\frac{1}{2} \frac{(s+i b)+(s-i b)}{(s-i b)(s+i b)}=\frac{s}{s^{2}+b^{2}}
\end{aligned}
$$

- Verify the formula $\mathcal{L}\left\{f^{\prime}\right\}(s)=s \mathcal{L}\{f\}(s)-f(0)$ for $f(t)=\sin (b t)$. If $f(t)=\sin (b t)$, then $f^{\prime}(t)=b \cos (b t)$.
- Compute the Laplace transform of $g(t)=\cos (b t)$ where $b \in \mathbb{R}, b \neq 0$. [Recall that $\mathcal{L}\left\{e^{ \pm i b t}\right\}(s)=\frac{1}{s \mp i b}$ for $s>0$.]

$$
\begin{aligned}
\mathcal{L}\{\cos (b t)\}(s) & =\mathcal{L}\left\{\frac{e^{i b t}+e^{-i b t}}{2}\right\}(s) \\
& =\frac{1}{2} \mathcal{L}\left\{e^{i b t}\right\}(s)+\frac{1}{2} \mathcal{L}\left\{e^{-i b t}\right\}(s) \\
& =\frac{1}{2} \frac{1}{s-i b}+\frac{1}{2} \frac{1}{s+i b} \quad \text { for } s>0 \\
& =\frac{1}{2} \frac{(s+i b)+(s-i b)}{(s-i b)(s+i b)}=\frac{s}{s^{2}+b^{2}}
\end{aligned}
$$

- Verify the formula $\mathcal{L}\left\{f^{\prime}\right\}(s)=s \mathcal{L}\{f\}(s)-f(0)$ for $f(t)=\sin (b t)$. If $f(t)=\sin (b t)$, then $f^{\prime}(t)=b \cos (b t)$. Moreover, $\mathcal{L}\{f\}(s)=\frac{b}{s^{2}+b^{2}}$ for $s>0$.
- Compute the Laplace transform of $g(t)=\cos (b t)$ where $b \in \mathbb{R}, b \neq 0$. [Recall that $\mathcal{L}\left\{e^{ \pm i b t}\right\}(s)=\frac{1}{s \mp i b}$ for $s>0$.]

$$
\begin{aligned}
\mathcal{L}\{\cos (b t)\}(s) & =\mathcal{L}\left\{\frac{e^{i b t}+e^{-i b t}}{2}\right\}(s) \\
& =\frac{1}{2} \mathcal{L}\left\{e^{i b t}\right\}(s)+\frac{1}{2} \mathcal{L}\left\{e^{-i b t}\right\}(s) \\
& =\frac{1}{2} \frac{1}{s-i b}+\frac{1}{2} \frac{1}{s+i b} \quad \text { for } s>0 \\
& =\frac{1}{2} \frac{(s+i b)+(s-i b)}{(s-i b)(s+i b)}=\frac{s}{s^{2}+b^{2}}
\end{aligned}
$$

- Verify the formula $\mathcal{L}\left\{f^{\prime}\right\}(s)=s \mathcal{L}\{f\}(s)-f(0)$ for $f(t)=\sin (b t)$. If $f(t)=\sin (b t)$, then $f^{\prime}(t)=b \cos (b t)$. Moreover, $\mathcal{L}\{f\}(s)=\frac{b}{s^{2}+b^{2}}$ for $s>0$. As we just computed:

$$
\mathcal{L}\left\{f^{\prime}\right\}(s)=b \mathcal{L}\{\cos (b t)\}(s)=b \frac{s}{s^{2}+b^{2}} \quad \text { for } s>0
$$

- Compute the Laplace transform of $g(t)=\cos (b t)$ where $b \in \mathbb{R}, b \neq 0$. [Recall that $\mathcal{L}\left\{e^{ \pm i b t}\right\}(s)=\frac{1}{s \mp i b}$ for $s>0$.]

$$
\begin{aligned}
\mathcal{L}\{\cos (b t)\}(s) & =\mathcal{L}\left\{\frac{e^{i b t}+e^{-i b t}}{2}\right\}(s) \\
& =\frac{1}{2} \mathcal{L}\left\{e^{i b t}\right\}(s)+\frac{1}{2} \mathcal{L}\left\{e^{-i b t}\right\}(s) \\
& =\frac{1}{2} \frac{1}{s-i b}+\frac{1}{2} \frac{1}{s+i b} \quad \text { for } s>0 \\
& =\frac{1}{2} \frac{(s+i b)+(s-i b)}{(s-i b)(s+i b)}=\frac{s}{s^{2}+b^{2}}
\end{aligned}
$$

- Verify the formula $\mathcal{L}\left\{f^{\prime}\right\}(s)=s \mathcal{L}\{f\}(s)-f(0)$ for $f(t)=\sin (b t)$. If $f(t)=\sin (b t)$, then $f^{\prime}(t)=b \cos (b t)$. Moreover, $\mathcal{L}\{f\}(s)=\frac{b}{s^{2}+b^{2}}$ for $s>0$. As we just computed:

$$
\mathcal{L}\left\{f^{\prime}\right\}(s)=b \mathcal{L}\{\cos (b t)\}(s)=b \frac{s}{s^{2}+b^{2}} \quad \text { for } s>0
$$

On the other hand,

$$
s \mathcal{L}\{f\}(s)-f(0)=s \frac{b}{s^{2}+b^{2}}-0 \quad \text { for } s>0
$$

- Compute the Laplace transform of $g(t)=\cos (b t)$ where $b \in \mathbb{R}, b \neq 0$. [Recall that $\mathcal{L}\left\{e^{ \pm i b t}\right\}(s)=\frac{1}{s \mp i b}$ for $s>0$.]

$$
\begin{aligned}
\mathcal{L}\{\cos (b t)\}(s) & =\mathcal{L}\left\{\frac{e^{i b t}+e^{-i b t}}{2}\right\}(s) \\
& =\frac{1}{2} \mathcal{L}\left\{e^{i b t}\right\}(s)+\frac{1}{2} \mathcal{L}\left\{e^{-i b t}\right\}(s) \\
& =\frac{1}{2} \frac{1}{s-i b}+\frac{1}{2} \frac{1}{s+i b} \quad \text { for } s>0 \\
& =\frac{1}{2} \frac{(s+i b)+(s-i b)}{(s-i b)(s+i b)}=\frac{s}{s^{2}+b^{2}}
\end{aligned}
$$

- Verify the formula $\mathcal{L}\left\{f^{\prime}\right\}(s)=s \mathcal{L}\{f\}(s)-f(0)$ for $f(t)=\sin (b t)$. If $f(t)=\sin (b t)$, then $f^{\prime}(t)=b \cos (b t)$. Moreover, $\mathcal{L}\{f\}(s)=\frac{b}{s^{2}+b^{2}}$ for $s>0$. As we just computed:

$$
\mathcal{L}\left\{f^{\prime}\right\}(s)=b \mathcal{L}\{\cos (b t)\}(s)=b \frac{s}{s^{2}+b^{2}} \quad \text { for } s>0
$$

On the other hand,

$$
s \mathcal{L}\{f\}(s)-f(0)=s \frac{b}{s^{2}+b^{2}}-0 \quad \text { for } s>0
$$

The formula is therefore verified.

Since $f^{\prime \prime}=\left(f^{\prime}\right)^{\prime}$ and more generally $f^{(n)}=\left(f^{(n-1)}\right)^{\prime}$, we may use induction to generalize the previous theorem to higher derivatives.

Since $f^{\prime \prime}=\left(f^{\prime}\right)^{\prime}$ and more generally $f^{(n)}=\left(f^{(n-1)}\right)^{\prime}$, we may use induction to generalize the previous theorem to higher derivatives.

Example:

If $f^{\prime}, f^{\prime \prime}$ satisfy the same conditions of f, f^{\prime} in Theorem 5.2.2, then for $s>a$

$$
\begin{aligned}
\mathcal{L}\left\{f^{\prime \prime}\right\}(s) & =s \mathcal{L}\left\{f^{\prime}\right\}(s)-f^{\prime}(0) \\
& =s[s \mathcal{L}\{f\}(s)-f(0)]-f^{\prime}(0) \\
& =s^{2} \mathcal{L}\{f\}(s)-s f(0)-f^{\prime}(0)
\end{aligned}
$$

Since $f^{\prime \prime}=\left(f^{\prime}\right)^{\prime}$ and more generally $f^{(n)}=\left(f^{(n-1)}\right)^{\prime}$, we may use induction to generalize the previous theorem to higher derivatives.

Example:

If $f^{\prime}, f^{\prime \prime}$ satisfy the same conditions of f, f^{\prime} in Theorem 5.2.2, then for $s>a$

$$
\begin{aligned}
\mathcal{L}\left\{f^{\prime \prime}\right\}(s) & =s \mathcal{L}\left\{f^{\prime}\right\}(s)-f^{\prime}(0) \\
& =s[s \mathcal{L}\{f\}(s)-f(0)]-f^{\prime}(0) \\
& =s^{2} \mathcal{L}\{f\}(s)-s f(0)-f^{\prime}(0)
\end{aligned}
$$

Corollary (Corollary 5.2.3)

Suppose that

- $f, f^{\prime}, \ldots, f^{(n-1)}$ are continuous on any interval $0 \leq t \leq A$,
- $f^{(n)}$ is piecewise continuous on any interval $0 \leq t \leq A$,
- $f, f^{\prime}, \ldots, f^{(n)}$ are of exponential order, with exponent a.

Then the Laplace transform of $f^{(n)}$ exists for $s>a$ and is given by

$$
\mathcal{L}\left\{f^{(n)}\right\}(s)=s^{n} \mathcal{L}\{f\}(s)-s^{(n-1)} f(0)-\cdots-s f^{(n-2)}(0)-f^{(n-1)}(0)
$$

Laplace Transform of $t^{n} f(t)$

Theorem (Theorem 5.2.4)

Suppose

- f is piecewise continuous on any interval $0 \leq t \leq A$,
- f is of exponential order with $\left|f^{(n)}(t)\right| \leq K e^{a t}$.

Then for any positive integer n, we have

$$
\mathcal{L}\left\{t^{n} f\right\}(s)=(-1)^{n}(\mathcal{L}\{f\})^{(n)}(s) \quad \text { for } s>a
$$

Example:

Compute $\mathcal{L}\{t\}, \mathcal{L}\left\{t^{2}\right\}$ and $\mathcal{L}\left\{2 t^{2}-3 t+1\right\}$.
[Recall that $\mathcal{L}\{1\}(s)=\frac{1}{s}$ for $s>0$.]

Laplace Transform of $t^{n} f(t)$

Theorem (Theorem 5.2.4)

Suppose

- f is piecewise continuous on any interval $0 \leq t \leq A$,
- f is of exponential order with $\left|f^{(n)}(t)\right| \leq K e^{a t}$.

Then for any positive integer n, we have

$$
\mathcal{L}\left\{t^{n} f\right\}(s)=(-1)^{n}(\mathcal{L}\{f\})^{(n)}(s) \quad \text { for } s>a
$$

Example:

Compute $\mathcal{L}\{t\}, \mathcal{L}\left\{t^{2}\right\}$ and $\mathcal{L}\left\{2 t^{2}-3 t+1\right\}$.
[Recall that $\mathcal{L}\{1\}(s)=\frac{1}{s}$ for $s>0$.]
We have $\left(\frac{1}{s}\right)^{\prime}=-\frac{1}{s^{2}}$ and $\left(\frac{1}{s}\right)^{\prime \prime}=\frac{2}{s^{3}}$.

Laplace Transform of $t^{n} f(t)$

Theorem (Theorem 5.2.4)

Suppose

- f is piecewise continuous on any interval $0 \leq t \leq A$,
- f is of exponential order with $\left|f^{(n)}(t)\right| \leq K e^{a t}$.

Then for any positive integer n, we have

$$
\mathcal{L}\left\{t^{n} f\right\}(s)=(-1)^{n}(\mathcal{L}\{f\})^{(n)}(s) \quad \text { for } s>a
$$

Example:

Compute $\mathcal{L}\{t\}, \mathcal{L}\left\{t^{2}\right\}$ and $\mathcal{L}\left\{2 t^{2}-3 t+1\right\}$.
[Recall that $\mathcal{L}\{1\}(s)=\frac{1}{s}$ for $s>0$.]
We have $\left(\frac{1}{s}\right)^{\prime}=-\frac{1}{s^{2}}$ and $\left(\frac{1}{s}\right)^{\prime \prime}=\frac{2}{s^{3}}$. Hence for $s>0$:

$$
\mathcal{L}\{t\}(s)=-(\mathcal{L}\{1\})^{\prime}(s)=\frac{1}{s^{2}} \quad \text { and } \quad \mathcal{L}\left\{t^{2}\right\}(s)=(-1)^{2}(\mathcal{L}\{1\})^{\prime \prime}(s)=\frac{2}{s^{3}}
$$

Laplace Transform of $t^{n} f(t)$

Theorem (Theorem 5.2.4)

Suppose

- f is piecewise continuous on any interval $0 \leq t \leq A$,
- f is of exponential order with $\left|f^{(n)}(t)\right| \leq K e^{a t}$.

Then for any positive integer n, we have

$$
\mathcal{L}\left\{t^{n} f\right\}(s)=(-1)^{n}(\mathcal{L}\{f\})^{(n)}(s) \quad \text { for } s>a
$$

Example:

Compute $\mathcal{L}\{t\}, \mathcal{L}\left\{t^{2}\right\}$ and $\mathcal{L}\left\{2 t^{2}-3 t+1\right\}$.
[Recall that $\mathcal{L}\{1\}(s)=\frac{1}{s}$ for $s>0$.]
We have $\left(\frac{1}{s}\right)^{\prime}=-\frac{1}{s^{2}}$ and $\left(\frac{1}{s}\right)^{\prime \prime}=\frac{2}{s^{3}}$. Hence for $s>0$:

$$
\mathcal{L}\{t\}(s)=-(\mathcal{L}\{1\})^{\prime}(s)=\frac{1}{s^{2}} \quad \text { and } \quad \mathcal{L}\left\{t^{2}\right\}(s)=(-1)^{2}(\mathcal{L}\{1\})^{\prime \prime}(s)=\frac{2}{s^{3}}
$$

Therefore:

$$
\mathcal{L}\left\{2 t^{2}-3 t+1\right\}=2 \mathcal{L}\left\{t^{2}\right\}-3 \mathcal{L}\{t\}+\mathcal{L}\{1\}=\frac{4}{s^{3}}+3 \frac{1}{s^{2}}+\frac{1}{s} \quad \text { for } s>0
$$

By

$$
\left(\frac{1}{s}\right)^{(n)}=(-1)^{n} \frac{n!}{s^{n+1}}
$$

we get the following corollary:
Corollary (Corollary 5.2.5)
For any positive integer n, we have

$$
\mathcal{L}\left\{t^{n}\right\}(s)=\frac{n!}{s^{n+1}} \quad \text { for } s>0
$$

Laplace Transform of differential equations

Compute the Laplace transform $Y(s)$ of the solution $y(t)$ of the DE

$$
y^{\prime \prime}-3 y^{\prime}+2 y=e^{-3 t}
$$

which satisfies with initial conditions $y(0)=1, y^{\prime}(0)=0$.

Laplace Transform of differential equations

Compute the Laplace transform $Y(s)$ of the solution $y(t)$ of the DE

$$
y^{\prime \prime}-3 y^{\prime}+2 y=e^{-3 t}
$$

which satisfies with initial conditions $y(0)=1, y^{\prime}(0)=0$.
Apply the Laplace transform to both sides of the $D E$ and use the linearity of \mathcal{L} :

$$
\begin{equation*}
\mathcal{L}\left\{y^{\prime \prime}\right\}-3 \mathcal{L}\left\{y^{\prime}\right\}+2 \mathcal{L}\{y\}=\mathcal{L}\left\{e^{-3 t}\right\} \tag{}
\end{equation*}
$$

Laplace Transform of differential equations

Compute the Laplace transform $Y(s)$ of the solution $y(t)$ of the DE

$$
y^{\prime \prime}-3 y^{\prime}+2 y=e^{-3 t}
$$

which satisfies with initial conditions $y(0)=1, y^{\prime}(0)=0$.
Apply the Laplace transform to both sides of the DE and use the linearity of \mathcal{L} :

$$
\begin{equation*}
\mathcal{L}\left\{y^{\prime \prime}\right\}-3 \mathcal{L}\left\{y^{\prime}\right\}+2 \mathcal{L}\{y\}=\mathcal{L}\left\{e^{-3 t}\right\} \tag{*}
\end{equation*}
$$

Recall that $\mathcal{L}\left\{e^{-3 t}\right\}=\frac{1}{s+3}$ for $s>-3$.

Laplace Transform of differential equations

Compute the Laplace transform $Y(s)$ of the solution $y(t)$ of the DE

$$
y^{\prime \prime}-3 y^{\prime}+2 y=e^{-3 t}
$$

which satisfies with initial conditions $y(0)=1, y^{\prime}(0)=0$.
Apply the Laplace transform to both sides of the $D E$ and use the linearity of \mathcal{L} :

$$
\begin{equation*}
\mathcal{L}\left\{y^{\prime \prime}\right\}-3 \mathcal{L}\left\{y^{\prime}\right\}+2 \mathcal{L}\{y\}=\mathcal{L}\left\{e^{-3 t}\right\} \tag{*}
\end{equation*}
$$

Recall that $\mathcal{L}\left\{e^{-3 t}\right\}=\frac{1}{s+3}$ for $s>-3$.
Set $Y=\mathcal{L}\{y\}$. We assume that our unknown solution y satisfies all the the hypothesis of Corollary 5.2.3. This allows to compute $\mathcal{L}\left\{y^{\prime}\right\}$ and $\mathcal{L}\left\{y^{\prime \prime}\right\}$ in (*):

Laplace Transform of differential equations

Compute the Laplace transform $Y(s)$ of the solution $y(t)$ of the DE

$$
y^{\prime \prime}-3 y^{\prime}+2 y=e^{-3 t}
$$

which satisfies with initial conditions $y(0)=1, y^{\prime}(0)=0$.
Apply the Laplace transform to both sides of the $D E$ and use the linearity of \mathcal{L} :

$$
\begin{equation*}
\mathcal{L}\left\{y^{\prime \prime}\right\}-3 \mathcal{L}\left\{y^{\prime}\right\}+2 \mathcal{L}\{y\}=\mathcal{L}\left\{e^{-3 t}\right\} \tag{*}
\end{equation*}
$$

Recall that $\mathcal{L}\left\{e^{-3 t}\right\}=\frac{1}{s+3}$ for $s>-3$.
Set $Y=\mathcal{L}\{y\}$. We assume that our unknown solution y satisfies all the the hypothesis of Corollary 5.2.3. This allows to compute $\mathcal{L}\left\{y^{\prime}\right\}$ and $\mathcal{L}\left\{y^{\prime \prime}\right\}$ in (*):

$$
\left(s^{2} Y(s)-s y(0)-y^{\prime}(0)\right)-3(s Y(s)-y(0))+2 Y(s)=\frac{1}{s+3}
$$

Laplace Transform of differential equations

Compute the Laplace transform $Y(s)$ of the solution $y(t)$ of the DE

$$
y^{\prime \prime}-3 y^{\prime}+2 y=e^{-3 t}
$$

which satisfies with initial conditions $y(0)=1, y^{\prime}(0)=0$.
Apply the Laplace transform to both sides of the $D E$ and use the linearity of \mathcal{L} :

$$
\begin{equation*}
\mathcal{L}\left\{y^{\prime \prime}\right\}-3 \mathcal{L}\left\{y^{\prime}\right\}+2 \mathcal{L}\{y\}=\mathcal{L}\left\{e^{-3 t}\right\} \tag{*}
\end{equation*}
$$

Recall that $\mathcal{L}\left\{e^{-3 t}\right\}=\frac{1}{s+3}$ for $s>-3$.
Set $Y=\mathcal{L}\{y\}$. We assume that our unknown solution y satisfies all the the hypothesis of Corollary 5.2.3. This allows to compute $\mathcal{L}\left\{y^{\prime}\right\}$ and $\mathcal{L}\left\{y^{\prime \prime}\right\}$ in (*):

$$
\left(s^{2} Y(s)-s y(0)-y^{\prime}(0)\right)-3(s Y(s)-y(0))+2 Y(s)=\frac{1}{s+3}
$$

Use the initial conditions $y(0)=1, y^{\prime}(0)=0$:

$$
\left(s^{2}-3 s+2\right) Y(s)-s+3=\frac{1}{s+3}
$$

Laplace Transform of differential equations

Compute the Laplace transform $Y(s)$ of the solution $y(t)$ of the DE

$$
y^{\prime \prime}-3 y^{\prime}+2 y=e^{-3 t}
$$

which satisfies with initial conditions $y(0)=1, y^{\prime}(0)=0$.
Apply the Laplace transform to both sides of the $D E$ and use the linearity of \mathcal{L} :

$$
\begin{equation*}
\mathcal{L}\left\{y^{\prime \prime}\right\}-3 \mathcal{L}\left\{y^{\prime}\right\}+2 \mathcal{L}\{y\}=\mathcal{L}\left\{e^{-3 t}\right\} \tag{*}
\end{equation*}
$$

Recall that $\mathcal{L}\left\{e^{-3 t}\right\}=\frac{1}{s+3}$ for $s>-3$.
Set $Y=\mathcal{L}\{y\}$. We assume that our unknown solution y satisfies all the the hypothesis of Corollary 5.2.3. This allows to compute $\mathcal{L}\left\{y^{\prime}\right\}$ and $\mathcal{L}\left\{y^{\prime \prime}\right\}$ in (*):

$$
\left(s^{2} Y(s)-s y(0)-y^{\prime}(0)\right)-3(s Y(s)-y(0))+2 Y(s)=\frac{1}{s+3}
$$

Use the initial conditions $y(0)=1, y^{\prime}(0)=0$:

$$
\left(s^{2}-3 s+2\right) Y(s)-s+3=\frac{1}{s+3}
$$

Thus

$$
Y(s)=\left[\frac{1}{s+3}+s-3\right] \frac{1}{s^{2}-3 s+2}
$$

Laplace Transform of differential equations

Compute the Laplace transform $Y(s)$ of the solution $y(t)$ of the DE

$$
y^{\prime \prime}-3 y^{\prime}+2 y=e^{-3 t}
$$

which satisfies with initial conditions $y(0)=1, y^{\prime}(0)=0$.
Apply the Laplace transform to both sides of the $D E$ and use the linearity of \mathcal{L} :

$$
\begin{equation*}
\mathcal{L}\left\{y^{\prime \prime}\right\}-3 \mathcal{L}\left\{y^{\prime}\right\}+2 \mathcal{L}\{y\}=\mathcal{L}\left\{e^{-3 t}\right\} \tag{*}
\end{equation*}
$$

Recall that $\mathcal{L}\left\{e^{-3 t}\right\}=\frac{1}{s+3}$ for $s>-3$.
Set $Y=\mathcal{L}\{y\}$. We assume that our unknown solution y satisfies all the the hypothesis of Corollary 5.2.3. This allows to compute $\mathcal{L}\left\{y^{\prime}\right\}$ and $\mathcal{L}\left\{y^{\prime \prime}\right\}$ in (*):

$$
\left(s^{2} Y(s)-s y(0)-y^{\prime}(0)\right)-3(s Y(s)-y(0))+2 Y(s)=\frac{1}{s+3}
$$

Use the initial conditions $y(0)=1, y^{\prime}(0)=0$:

$$
\left(s^{2}-3 s+2\right) Y(s)-s+3=\frac{1}{s+3}
$$

Thus

$$
Y(s)=\left[\frac{1}{s+3}+s-3\right] \frac{1}{s^{2}-3 s+2}=\frac{1+(s-3)(s+3)}{(s+3)\left(s^{2}-3 s+2\right)}
$$

Laplace Transform of differential equations

Compute the Laplace transform $Y(s)$ of the solution $y(t)$ of the DE

$$
y^{\prime \prime}-3 y^{\prime}+2 y=e^{-3 t}
$$

which satisfies with initial conditions $y(0)=1, y^{\prime}(0)=0$.
Apply the Laplace transform to both sides of the $D E$ and use the linearity of \mathcal{L} :

$$
\begin{equation*}
\mathcal{L}\left\{y^{\prime \prime}\right\}-3 \mathcal{L}\left\{y^{\prime}\right\}+2 \mathcal{L}\{y\}=\mathcal{L}\left\{e^{-3 t}\right\} \tag{*}
\end{equation*}
$$

Recall that $\mathcal{L}\left\{e^{-3 t}\right\}=\frac{1}{s+3}$ for $s>-3$.
Set $Y=\mathcal{L}\{y\}$. We assume that our unknown solution y satisfies all the the hypothesis of Corollary 5.2.3. This allows to compute $\mathcal{L}\left\{y^{\prime}\right\}$ and $\mathcal{L}\left\{y^{\prime \prime}\right\}$ in (*):

$$
\left(s^{2} Y(s)-s y(0)-y^{\prime}(0)\right)-3(s Y(s)-y(0))+2 Y(s)=\frac{1}{s+3}
$$

Use the initial conditions $y(0)=1, y^{\prime}(0)=0$:

$$
\left(s^{2}-3 s+2\right) Y(s)-s+3=\frac{1}{s+3}
$$

Thus

$$
Y(s)=\left[\frac{1}{s+3}+s-3\right] \frac{1}{s^{2}-3 s+2}=\frac{1+(s-3)(s+3)}{(s+3)\left(s^{2}-3 s+2\right)}=\frac{1+s^{2}-9}{(s+3)(s-2)(s-1)}
$$

Laplace Transform of differential equations

Compute the Laplace transform $Y(s)$ of the solution $y(t)$ of the DE

$$
y^{\prime \prime}-3 y^{\prime}+2 y=e^{-3 t}
$$

which satisfies with initial conditions $y(0)=1, y^{\prime}(0)=0$.
Apply the Laplace transform to both sides of the $D E$ and use the linearity of \mathcal{L} :

$$
\begin{equation*}
\mathcal{L}\left\{y^{\prime \prime}\right\}-3 \mathcal{L}\left\{y^{\prime}\right\}+2 \mathcal{L}\{y\}=\mathcal{L}\left\{e^{-3 t}\right\} \tag{*}
\end{equation*}
$$

Recall that $\mathcal{L}\left\{e^{-3 t}\right\}=\frac{1}{s+3}$ for $s>-3$.
Set $Y=\mathcal{L}\{y\}$. We assume that our unknown solution y satisfies all the the hypothesis of Corollary 5.2.3. This allows to compute $\mathcal{L}\left\{y^{\prime}\right\}$ and $\mathcal{L}\left\{y^{\prime \prime}\right\}$ in (*):

$$
\left(s^{2} Y(s)-s y(0)-y^{\prime}(0)\right)-3(s Y(s)-y(0))+2 Y(s)=\frac{1}{s+3}
$$

Use the initial conditions $y(0)=1, y^{\prime}(0)=0$:

$$
\left(s^{2}-3 s+2\right) Y(s)-s+3=\frac{1}{s+3}
$$

Thus

$$
\begin{aligned}
Y(s) & =\left[\frac{1}{s+3}+s-3\right] \frac{1}{s^{2}-3 s+2}=\frac{1+(s-3)(s+3)}{(s+3)\left(s^{2}-3 s+2\right)}=\frac{1+s^{2}-9}{(s+3)(s-2)(s-1)} \\
& =\frac{s^{2}-8}{(s+3)(s-2)(s-1)}
\end{aligned}
$$

Laplace Transform of differential equations

Compute the Laplace transform $Y(s)$ of the solution $y(t)$ of the DE

$$
y^{\prime \prime}-3 y^{\prime}+2 y=e^{-3 t}
$$

which satisfies with initial conditions $y(0)=1, y^{\prime}(0)=0$.
Apply the Laplace transform to both sides of the $D E$ and use the linearity of \mathcal{L} :

$$
\begin{equation*}
\mathcal{L}\left\{y^{\prime \prime}\right\}-3 \mathcal{L}\left\{y^{\prime}\right\}+2 \mathcal{L}\{y\}=\mathcal{L}\left\{e^{-3 t}\right\} \tag{*}
\end{equation*}
$$

Recall that $\mathcal{L}\left\{e^{-3 t}\right\}=\frac{1}{s+3}$ for $s>-3$.
Set $Y=\mathcal{L}\{y\}$. We assume that our unknown solution y satisfies all the the hypothesis of Corollary 5.2.3. This allows to compute $\mathcal{L}\left\{y^{\prime}\right\}$ and $\mathcal{L}\left\{y^{\prime \prime}\right\}$ in (*):

$$
\left(s^{2} Y(s)-s y(0)-y^{\prime}(0)\right)-3(s Y(s)-y(0))+2 Y(s)=\frac{1}{s+3}
$$

Use the initial conditions $y(0)=1, y^{\prime}(0)=0$:

$$
\left(s^{2}-3 s+2\right) Y(s)-s+3=\frac{1}{s+3}
$$

Thus

$$
\begin{aligned}
Y(s) & =\left[\frac{1}{s+3}+s-3\right] \frac{1}{s^{2}-3 s+2}=\frac{1+(s-3)(s+3)}{(s+3)\left(s^{2}-3 s+2\right)}=\frac{1+s^{2}-9}{(s+3)(s-2)(s-1)} \\
& =\frac{s^{2}-8}{(s+3)(s-2)(s-1)}
\end{aligned}
$$

Laplace Transform of differential equations

Compute the Laplace transform $Y(s)$ of the solution $y(t)$ of the DE

$$
y^{\prime \prime}-3 y^{\prime}+2 y=e^{-3 t}
$$

which satisfies with initial conditions $y(0)=1, y^{\prime}(0)=0$.
Apply the Laplace transform to both sides of the $D E$ and use the linearity of \mathcal{L} :

$$
\begin{equation*}
\mathcal{L}\left\{y^{\prime \prime}\right\}-3 \mathcal{L}\left\{y^{\prime}\right\}+2 \mathcal{L}\{y\}=\mathcal{L}\left\{e^{-3 t}\right\} \tag{*}
\end{equation*}
$$

Recall that $\mathcal{L}\left\{e^{-3 t}\right\}=\frac{1}{s+3}$ for $s>-3$.
Set $Y=\mathcal{L}\{y\}$. We assume that our unknown solution y satisfies all the the hypothesis of Corollary 5.2.3. This allows to compute $\mathcal{L}\left\{y^{\prime}\right\}$ and $\mathcal{L}\left\{y^{\prime \prime}\right\}$ in (*):

$$
\left(s^{2} Y(s)-s y(0)-y^{\prime}(0)\right)-3(s Y(s)-y(0))+2 Y(s)=\frac{1}{s+3}
$$

Use the initial conditions $y(0)=1, y^{\prime}(0)=0$:

$$
\left(s^{2}-3 s+2\right) Y(s)-s+3=\frac{1}{s+3}
$$

Thus

$$
\begin{aligned}
Y(s) & =\left[\frac{1}{s+3}+s-3\right] \frac{1}{s^{2}-3 s+2}=\frac{1+(s-3)(s+3)}{(s+3)\left(s^{2}-3 s+2\right)}=\frac{1+s^{2}-9}{(s+3)(s-2)(s-1)} \\
& =\frac{s^{2}-8}{(s+3)(s-2)(s-1)}
\end{aligned}
$$

In the above example, we could find $Y=\mathcal{L}\{y\}$, the Laplace transform of a solution.

In the above example, we could find $Y=\mathcal{L}\{y\}$, the Laplace transform of a solution.
Question: how to recover the solution y out of its Laplace transform?

In the above example, we could find $Y=\mathcal{L}\{y\}$, the Laplace transform of a solution.
Question: how to recover the solution y out of its Laplace transform?
The problem of finding a function out its Laplace transform is the problem of inverting the Laplace transform.

