Section 5.4: Solving differential equation with Laplace transforms

Main Topics:

The Laplace transform method to solve initial value problems for

- second order linear DEs with constant coefficients
- higher order linear DEs with constant coefficients
- systems of first order linear DEs with constant coefficients

The Laplace transform method

From Sections 5.2 and 5.3: applying the Laplace transform to the IVP

$$
y^{\prime \prime}+a y^{\prime}+b y=f(t) \quad \text { with initial conditions } y(0)=y_{0}, y^{\prime}(0)=y_{1}
$$

leads to an algebraic equation for $Y=\mathcal{L}\{y\}$, where $y(t)$ is the solution of the IVP.
The algebraic equation can be solved for $Y=\mathcal{L}\{y\}$.
Inverting the Laplace transform leads to the solution $y=\mathcal{L}^{-1}\{Y\}$.

FIGURE 5.0.1 Laplace transform method for solving differential equations.
From: J. Brannan \& W. Joyce, Differential equations.

Example (continued from Section 5.2):

Solve the IVP: $\quad y^{\prime \prime}-3 y^{\prime}+2 y=e^{-3 t}$ with initial conditions $y(0)=1, y^{\prime}(0)=0$.

Example (continued from Section 5.2):

Solve the IVP: $\quad y^{\prime \prime}-3 y^{\prime}+2 y=e^{-3 t}$ with initial conditions $y(0)=1, y^{\prime}(0)=0$.
Recall our method:

Example (continued from Section 5.2):

Solve the IVP: $\quad y^{\prime \prime}-3 y^{\prime}+2 y=e^{-3 t}$ with initial conditions $y(0)=1, y^{\prime}(0)=0$.
Recall our method:

- Apply the Laplace transform to both sides of the DE:

$$
\begin{array}{ll}
\mathcal{L}\left\{y^{\prime \prime}\right\}- & -3 \mathcal{L}\left\{y^{\prime}\right\}+2 \mathcal{L}\{y\}=\mathcal{L}\left\{e^{-3 t}\right\} \\
\text { i.e. } \quad\left[s^{2} \mathcal{L}\{y\}(s)-s y(0)-y^{\prime}(0)\right]-3[s \mathcal{L}\{y\}(s)-y(0)]+2 \mathcal{L}\{y\}(s)=\frac{1}{s+3} \\
\text { i.e. } \quad\left[s^{2} Y(s)-s y(0)-y^{\prime}(0)\right]-3[s Y(s)-y(0)]+2 Y(s)=\frac{1}{s+3}
\end{array}
$$

where $Y(s)=\mathcal{L}\{y\}(s)$.

Example (continued from Section 5.2):

Solve the IVP: $\quad y^{\prime \prime}-3 y^{\prime}+2 y=e^{-3 t}$ with initial conditions $y(0)=1, y^{\prime}(0)=0$.
Recall our method:

- Apply the Laplace transform to both sides of the DE:

$$
\begin{array}{ll}
\mathcal{L}\left\{y^{\prime \prime}\right\}- & -3 \mathcal{L}\left\{y^{\prime}\right\}+2 \mathcal{L}\{y\}=\mathcal{L}\left\{e^{-3 t}\right\} \\
\text { i.e. } \quad\left[s^{2} \mathcal{L}\{y\}(s)-s y(0)-y^{\prime}(0)\right]-3[s \mathcal{L}\{y\}(s)-y(0)]+2 \mathcal{L}\{y\}(s)=\frac{1}{s+3} \\
\text { i.e. } \quad\left[s^{2} Y(s)-s y(0)-y^{\prime}(0)\right]-3[s Y(s)-y(0)]+2 Y(s)=\frac{1}{s+3}
\end{array}
$$

where $Y(s)=\mathcal{L}\{y\}(s)$.

- Insert the initial condition $y(0)=1, y^{\prime}(0)=0$:
i.e.

$$
\begin{gathered}
{\left[s^{2} Y(s)-s\right]-3[s Y(s)-1]+2 Y(s)=\frac{1}{s+3}} \\
\left(s^{2}-3 s+2\right) Y(s)=s-3+\frac{1}{s+3}
\end{gathered}
$$

Example (continued from Section 5.2):

Solve the IVP: $\quad y^{\prime \prime}-3 y^{\prime}+2 y=e^{-3 t}$ with initial conditions $y(0)=1, y^{\prime}(0)=0$.
Recall our method:

- Apply the Laplace transform to both sides of the DE:

$$
\begin{array}{ll}
\mathcal{L}\left\{y^{\prime \prime}\right\}- & -3 \mathcal{L}\left\{y^{\prime}\right\}+2 \mathcal{L}\{y\}=\mathcal{L}\left\{e^{-3 t}\right\} \\
\text { i.e. } \quad\left[s^{2} \mathcal{L}\{y\}(s)-s y(0)-y^{\prime}(0)\right]-3[s \mathcal{L}\{y\}(s)-y(0)]+2 \mathcal{L}\{y\}(s)=\frac{1}{s+3} \\
\text { i.e. } \quad\left[s^{2} Y(s)-s y(0)-y^{\prime}(0)\right]-3[s Y(s)-y(0)]+2 Y(s)=\frac{1}{s+3}
\end{array}
$$

where $Y(s)=\mathcal{L}\{y\}(s)$.

- Insert the initial condition $y(0)=1, y^{\prime}(0)=0$:
i.e.

$$
\begin{gathered}
{\left[s^{2} Y(s)-s\right]-3[s Y(s)-1]+2 Y(s)=\frac{1}{s+3}} \\
\left(s^{2}-3 s+2\right) Y(s)=s-3+\frac{1}{s+3}
\end{gathered}
$$

- Solve for $Y(s)$:

$$
Y(s)=\frac{s^{2}-8}{(s+3)(s-2)(s-1)}
$$

Example (continued from Section 5.2):

Solve the IVP: $\quad y^{\prime \prime}-3 y^{\prime}+2 y=e^{-3 t}$ with initial conditions $y(0)=1, y^{\prime}(0)=0$.
Recall our method:

- Apply the Laplace transform to both sides of the DE:

$$
\begin{array}{ll}
\mathcal{L}\left\{y^{\prime \prime}\right\}- & -3 \mathcal{L}\left\{y^{\prime}\right\}+2 \mathcal{L}\{y\}=\mathcal{L}\left\{e^{-3 t}\right\} \\
\text { i.e. } \quad\left[s^{2} \mathcal{L}\{y\}(s)-s y(0)-y^{\prime}(0)\right]-3[s \mathcal{L}\{y\}(s)-y(0)]+2 \mathcal{L}\{y\}(s)=\frac{1}{s+3} \\
\text { i.e. } \quad\left[s^{2} Y(s)-s y(0)-y^{\prime}(0)\right]-3[s Y(s)-y(0)]+2 Y(s)=\frac{1}{s+3}
\end{array}
$$

where $Y(s)=\mathcal{L}\{y\}(s)$.

- Insert the initial condition $y(0)=1, y^{\prime}(0)=0$:
i.e.

$$
\begin{gathered}
{\left[s^{2} Y(s)-s\right]-3[s Y(s)-1]+2 Y(s)=\frac{1}{s+3}} \\
\left(s^{2}-3 s+2\right) Y(s)=s-3+\frac{1}{s+3}
\end{gathered}
$$

- Solve for $Y(s)$:

$$
Y(s)=\frac{s^{2}-8}{(s+3)(s-2)(s-1)}
$$

Remark: $s^{2}-3 s+2$ is the characteristic polynomial of the DE $y^{\prime \prime}-3 y^{\prime}+2 y=0$.

- Compute $\mathcal{L}^{-1}\{Y\}$ for $Y(s)=\frac{s^{2}-8}{(s+3)(s-2)(s-1)}$:
(1) Partial fraction decomposition:

$$
\frac{s^{2}-8}{(s+3)(s-2)(s-1)}=\frac{A}{s+3}+\frac{B}{s-2}+\frac{C}{s-1}
$$

is equivalent to

$$
(A+B+C) s^{2}-(-3 A+2 B+C) s+(2 A-3 B-6 C)=s^{2}-8
$$

Equating the coefficients of s^{2}, s and 1 leads to a linear system of equations in A, B, C.
Solution: $A=\frac{1}{20}, B=-\frac{4}{5}, C=\frac{7}{4}$.
(2) Linearity of \mathcal{L}^{-1} :

$$
\mathcal{L}^{-1}\{Y(s)\}=A \mathcal{L}^{-1}\left\{\frac{1}{s+3}\right\}+B \mathcal{L}^{-1}\left\{\frac{1}{s-2}\right\}+C \mathcal{L}^{-1}\left\{\frac{1}{s-1}\right\}
$$

(3) Look at the tables to find the inverse Laplace transforms: if $F(s)=\frac{1}{s-a}$
$(s>a)$, then $\mathcal{L}^{-1}\{F\}(t)=e^{a t}$.

- Conclusion: $y(t)=\mathcal{L}^{-1}\{Y\}=\frac{1}{20} e^{-3 t}-\frac{4}{5} e^{2 t}+\frac{7}{4} e^{t}$.

Constant coefficient linear DE's of second order

In general, taking the Laplace transform of the initial value problem:

$$
a y^{\prime \prime}+b y^{\prime}+c y=f \quad \text { with } \quad y(0)=y_{0} \quad \text { and } \quad y^{\prime}(0)=y_{1}
$$

gives

$$
a\left[s^{2} Y(s)-s y(0)-y^{\prime}(0)\right]+b[s Y(s)-y(0)]+c Y(s)=F(s)
$$

where:

- $Y(s)=\mathcal{L}\{y\}(s)$ is the Laplace transform of y,
- $F(s)=\mathcal{L}\{f\}(s)$ is the Laplace transform of f.

It can be rewritten as

$$
\left(a s^{2}+b s+c\right) Y(s)-(a s+b) y(0)-a y^{\prime}(0)=F(s) .
$$

So,

$$
Y(s)=\frac{(a s+b) y(0)+a y^{\prime}(0)}{a s^{2}+b s+c}+\frac{F(s)}{a s^{2}+b s+c} .
$$

The denominator $a s^{2}+b s+c$ is the characteristic polynomial of $a y^{\prime \prime}+b y^{\prime}+c y=f$. (Recall that $a s^{2}+b s+c=0$ is its characteristic equation.)

Constant coefficient linear DE's of arbitrary order

Generalize the above to IVP's for constant coefficient linear DE's of arbitrary order:

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=f(t)
$$

with

$$
y^{(n-1)}(0)=y_{n-1}, y^{(n-2)}(0)=y_{n-2}, \cdots, y(0)=y_{0}
$$

Constant coefficient linear DE's of arbitrary order

Generalize the above to IVP's for constant coefficient linear DE's of arbitrary order:

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=f(t)
$$

with

$$
y^{(n-1)}(0)=y_{n-1}, y^{(n-2)}(0)=y_{n-2}, \cdots, y(0)=y_{0}
$$

- Apply the Laplace transform to both members of the DE and use that \mathcal{L} is a linear operator:

$$
a_{n} \mathcal{L}\left\{y^{(n)}\right\}(s)+a_{n-1} \mathcal{L}\left\{y^{(n-1)}\right\}(s)+\cdots+a_{1} \mathcal{L}\left\{y^{\prime}\right\}(s)+a_{0} \mathcal{L}\{y\}(s)=\mathcal{L}\{f\}(s) .
$$

Constant coefficient linear DE's of arbitrary order

Generalize the above to IVP's for constant coefficient linear DE's of arbitrary order:

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=f(t)
$$

with

$$
y^{(n-1)}(0)=y_{n-1}, y^{(n-2)}(0)=y_{n-2}, \cdots, y(0)=y_{0}
$$

- Apply the Laplace transform to both members of the $D E$ and use that \mathcal{L} is a linear operator:

$$
a_{n} \mathcal{L}\left\{y^{(n)}\right\}(s)+a_{n-1} \mathcal{L}\left\{y^{(n-1)}\right\}(s)+\cdots+a_{1} \mathcal{L}\left\{y^{\prime}\right\}(s)+a_{0} \mathcal{L}\{y\}(s)=\mathcal{L}\{f\}(s) .
$$

- RHS: compute $\mathcal{L}\{f\}(s)$.

Constant coefficient linear DE's of arbitrary order

Generalize the above to IVP's for constant coefficient linear DE's of arbitrary order:

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=f(t)
$$

with

$$
y^{(n-1)}(0)=y_{n-1}, y^{(n-2)}(0)=y_{n-2}, \cdots, y(0)=y_{0}
$$

- Apply the Laplace transform to both members of the DE and use that \mathcal{L} is a linear operator:

$$
a_{n} \mathcal{L}\left\{y^{(n)}\right\}(s)+a_{n-1} \mathcal{L}\left\{y^{(n-1)}\right\}(s)+\cdots+a_{1} \mathcal{L}\left\{y^{\prime}\right\}(s)+a_{0} \mathcal{L}\{y\}(s)=\mathcal{L}\{f\}(s) .
$$

- RHS: compute $\mathcal{L}\{f\}(s)$.
- LHS: apply, for every $k=1, \ldots, n$:

$$
\mathcal{L}\left\{y^{(k)}\right\}(s)=s^{k} \underbrace{\mathcal{L}\{y\}(s)}_{Y(s)}-s^{k-1} y(0)-\cdots-s y^{(k-2)}(0)-y^{(k-1)}(0)
$$

Constant coefficient linear DE's of arbitrary order

Generalize the above to IVP's for constant coefficient linear DE's of arbitrary order:

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=f(t)
$$

with

$$
y^{(n-1)}(0)=y_{n-1}, y^{(n-2)}(0)=y_{n-2}, \cdots, y(0)=y_{0}
$$

- Apply the Laplace transform to both members of the DE and use that \mathcal{L} is a linear operator:

$$
a_{n} \mathcal{L}\left\{y^{(n)}\right\}(s)+a_{n-1} \mathcal{L}\left\{y^{(n-1)}\right\}(s)+\cdots+a_{1} \mathcal{L}\left\{y^{\prime}\right\}(s)+a_{0} \mathcal{L}\{y\}(s)=\mathcal{L}\{f\}(s) .
$$

- RHS: compute $\mathcal{L}\{f\}(s)$.
- LHS: apply, for every $k=1, \ldots, n$:

$$
\mathcal{L}\left\{y^{(k)}\right\}(s)=s^{k} \underbrace{\mathcal{L}\{y\}(s)}_{Y(s)}-s^{k-1} y(0)-\cdots-s y^{(k-2)}(0)-y^{(k-1)}(0)
$$

- The DE in y is transformed into an algebraic equation in Y. Solve it for Y.

Constant coefficient linear DE's of arbitrary order

Generalize the above to IVP's for constant coefficient linear DE's of arbitrary order:

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=f(t)
$$

with

$$
y^{(n-1)}(0)=y_{n-1}, y^{(n-2)}(0)=y_{n-2}, \cdots, y(0)=y_{0}
$$

- Apply the Laplace transform to both members of the DE and use that \mathcal{L} is a linear operator:

$$
a_{n} \mathcal{L}\left\{y^{(n)}\right\}(s)+a_{n-1} \mathcal{L}\left\{y^{(n-1)}\right\}(s)+\cdots+a_{1} \mathcal{L}\left\{y^{\prime}\right\}(s)+a_{0} \mathcal{L}\{y\}(s)=\mathcal{L}\{f\}(s) .
$$

- RHS: compute $\mathcal{L}\{f\}(s)$.
- LHS: apply, for every $k=1, \ldots, n$:

$$
\mathcal{L}\left\{y^{(k)}\right\}(s)=s^{k} \underbrace{\mathcal{L}\{y\}(s)}_{Y(s)}-s^{k-1} y(0)-\cdots-s y^{(k-2)}(0)-y^{(k-1)}(0)
$$

- The DE in y is transformed into an algebraic equation in Y. Solve it for Y.
- Compute $y(t)=\mathcal{L}^{-1}\{Y(s)\}$: this is the solution of the initial IVP.

Example: Use the Laplace transform method to solve the IVP

$$
y^{\prime \prime \prime}+3 y^{\prime}=\sin (2 t) \quad \text { with } y(0)=1, y^{\prime}(0)=0, y^{\prime \prime}(0)=-2
$$

Example: Use the Laplace transform method to solve the IVP

$$
y^{\prime \prime \prime}+3 y^{\prime}=\sin (2 t) \quad \text { with } y(0)=1, y^{\prime}(0)=0, y^{\prime \prime}(0)=-2
$$

Apply the Laplace transform to both sides:

$$
\mathcal{L}\left\{y^{\prime \prime \prime}\right\}(s)+3 \mathcal{L}\left\{y^{\prime}\right\}(s)=\mathcal{L}\{\sin (2 t)\}(s)
$$

Example: Use the Laplace transform method to solve the IVP

$$
y^{\prime \prime \prime}+3 y^{\prime}=\sin (2 t) \quad \text { with } y(0)=1, y^{\prime}(0)=0, y^{\prime \prime}(0)=-2
$$

Apply the Laplace transform to both sides:

$$
\mathcal{L}\left\{y^{\prime \prime \prime}\right\}(s)+3 \mathcal{L}\left\{y^{\prime}\right\}(s)=\mathcal{L}\{\sin (2 t)\}(s)
$$

Set $Y(s)=\mathcal{L}\{y\}(s)$.

Example: Use the Laplace transform method to solve the IVP

$$
y^{\prime \prime \prime}+3 y^{\prime}=\sin (2 t) \quad \text { with } y(0)=1, y^{\prime}(0)=0, y^{\prime \prime}(0)=-2
$$

Apply the Laplace transform to both sides:

$$
\mathcal{L}\left\{y^{\prime \prime \prime}\right\}(s)+3 \mathcal{L}\left\{y^{\prime}\right\}(s)=\mathcal{L}\{\sin (2 t)\}(s)
$$

Set $Y(s)=\mathcal{L}\{y\}(s)$.
By the formula for the Laplace transform of the derivatives of y :

$$
\left[s^{3} Y(s)-s^{2} y(0)-s y^{\prime}(0)-y^{\prime \prime}(0)\right]+3[s Y(s)-y(0)]=\frac{2}{s^{2}+4}
$$

Example: Use the Laplace transform method to solve the IVP

$$
y^{\prime \prime \prime}+3 y^{\prime}=\sin (2 t) \quad \text { with } y(0)=1, y^{\prime}(0)=0, y^{\prime \prime}(0)=-2
$$

Apply the Laplace transform to both sides:

$$
\mathcal{L}\left\{y^{\prime \prime \prime}\right\}(s)+3 \mathcal{L}\left\{y^{\prime}\right\}(s)=\mathcal{L}\{\sin (2 t)\}(s)
$$

Set $Y(s)=\mathcal{L}\{y\}(s)$.
By the formula for the Laplace transform of the derivatives of y :

$$
\left[s^{3} Y(s)-s^{2} y(0)-s y^{\prime}(0)-y^{\prime \prime}(0)\right]+3[s Y(s)-y(0)]=\frac{2}{s^{2}+4}
$$

Inserting the initial conditions:

$$
\left[s^{3} Y(s)-s^{2}+2\right]+3 s Y(s)-3=\frac{2}{s^{2}+4}
$$

i.e.

Example: Use the Laplace transform method to solve the IVP

$$
y^{\prime \prime \prime}+3 y^{\prime}=\sin (2 t) \quad \text { with } y(0)=1, y^{\prime}(0)=0, y^{\prime \prime}(0)=-2
$$

Apply the Laplace transform to both sides:

$$
\mathcal{L}\left\{y^{\prime \prime \prime}\right\}(s)+3 \mathcal{L}\left\{y^{\prime}\right\}(s)=\mathcal{L}\{\sin (2 t)\}(s)
$$

Set $Y(s)=\mathcal{L}\{y\}(s)$.
By the formula for the Laplace transform of the derivatives of y :

$$
\left[s^{3} Y(s)-s^{2} y(0)-s y^{\prime}(0)-y^{\prime \prime}(0)\right]+3[s Y(s)-y(0)]=\frac{2}{s^{2}+4}
$$

Inserting the initial conditions:

$$
\left[s^{3} Y(s)-s^{2}+2\right]+3 s Y(s)-3=\frac{2}{s^{2}+4}
$$

i.e.

$$
\left(s^{3}+3 s\right) Y(s)=s^{2}+1+\frac{2}{s^{2}+4}
$$

Example: Use the Laplace transform method to solve the IVP

$$
y^{\prime \prime \prime}+3 y^{\prime}=\sin (2 t) \quad \text { with } y(0)=1, y^{\prime}(0)=0, y^{\prime \prime}(0)=-2
$$

Apply the Laplace transform to both sides:

$$
\mathcal{L}\left\{y^{\prime \prime \prime}\right\}(s)+3 \mathcal{L}\left\{y^{\prime}\right\}(s)=\mathcal{L}\{\sin (2 t)\}(s)
$$

Set $Y(s)=\mathcal{L}\{y\}(s)$.
By the formula for the Laplace transform of the derivatives of y :

$$
\left[s^{3} Y(s)-s^{2} y(0)-s y^{\prime}(0)-y^{\prime \prime}(0)\right]+3[s Y(s)-y(0)]=\frac{2}{s^{2}+4}
$$

Inserting the initial conditions:

$$
\left[s^{3} Y(s)-s^{2}+2\right]+3 s Y(s)-3=\frac{2}{s^{2}+4}
$$

i.e.

$$
\left(s^{3}+3 s\right) Y(s)=s^{2}+1+\frac{2}{s^{2}+4}=\frac{s^{4}+5 s^{2}+6}{s^{2}+4}
$$

Example: Use the Laplace transform method to solve the IVP

$$
y^{\prime \prime \prime}+3 y^{\prime}=\sin (2 t) \quad \text { with } y(0)=1, y^{\prime}(0)=0, y^{\prime \prime}(0)=-2
$$

Apply the Laplace transform to both sides:

$$
\mathcal{L}\left\{y^{\prime \prime \prime}\right\}(s)+3 \mathcal{L}\left\{y^{\prime}\right\}(s)=\mathcal{L}\{\sin (2 t)\}(s)
$$

Set $Y(s)=\mathcal{L}\{y\}(s)$.
By the formula for the Laplace transform of the derivatives of y :

$$
\left[s^{3} Y(s)-s^{2} y(0)-s y^{\prime}(0)-y^{\prime \prime}(0)\right]+3[s Y(s)-y(0)]=\frac{2}{s^{2}+4}
$$

Inserting the initial conditions:

$$
\left[s^{3} Y(s)-s^{2}+2\right]+3 s Y(s)-3=\frac{2}{s^{2}+4}
$$

i.e.

$$
\left(s^{3}+3 s\right) Y(s)=s^{2}+1+\frac{2}{s^{2}+4}=\frac{s^{4}+5 s^{2}+6}{s^{2}+4}=\frac{\left(s^{2}+3\right)\left(s^{2}+2\right)}{s^{2}+4}
$$

Hence

$$
Y(s)=\frac{s^{2}+2}{s\left(s^{2}+4\right)}
$$

Example: Use the Laplace transform method to solve the IVP

$$
y^{\prime \prime \prime}+3 y^{\prime}=\sin (2 t) \quad \text { with } y(0)=1, y^{\prime}(0)=0, y^{\prime \prime}(0)=-2
$$

Apply the Laplace transform to both sides:

$$
\mathcal{L}\left\{y^{\prime \prime \prime}\right\}(s)+3 \mathcal{L}\left\{y^{\prime}\right\}(s)=\mathcal{L}\{\sin (2 t)\}(s)
$$

Set $Y(s)=\mathcal{L}\{y\}(s)$.
By the formula for the Laplace transform of the derivatives of y :

$$
\left[s^{3} Y(s)-s^{2} y(0)-s y^{\prime}(0)-y^{\prime \prime}(0)\right]+3[s Y(s)-y(0)]=\frac{2}{s^{2}+4}
$$

Inserting the initial conditions:

$$
\left[s^{3} Y(s)-s^{2}+2\right]+3 s Y(s)-3=\frac{2}{s^{2}+4}
$$

i.e.

$$
\left(s^{3}+3 s\right) Y(s)=s^{2}+1+\frac{2}{s^{2}+4}=\frac{s^{4}+5 s^{2}+6}{s^{2}+4}=\frac{\left(s^{2}+3\right)\left(s^{2}+2\right)}{s^{2}+4}
$$

Hence

$$
Y(s)=\frac{s^{2}+2}{s\left(s^{2}+4\right)}=\frac{1}{2} \frac{1}{s}+\frac{1}{2} \frac{s}{s^{2}+4}
$$

by partial fraction decomposition.

Example: Use the Laplace transform method to solve the IVP

$$
y^{\prime \prime \prime}+3 y^{\prime}=\sin (2 t) \quad \text { with } y(0)=1, y^{\prime}(0)=0, y^{\prime \prime}(0)=-2
$$

Apply the Laplace transform to both sides:

$$
\mathcal{L}\left\{y^{\prime \prime \prime}\right\}(s)+3 \mathcal{L}\left\{y^{\prime}\right\}(s)=\mathcal{L}\{\sin (2 t)\}(s)
$$

Set $Y(s)=\mathcal{L}\{y\}(s)$.
By the formula for the Laplace transform of the derivatives of y :

$$
\left[s^{3} Y(s)-s^{2} y(0)-s y^{\prime}(0)-y^{\prime \prime}(0)\right]+3[s Y(s)-y(0)]=\frac{2}{s^{2}+4}
$$

Inserting the initial conditions:

$$
\left[s^{3} Y(s)-s^{2}+2\right]+3 s Y(s)-3=\frac{2}{s^{2}+4}
$$

i.e.

$$
\left(s^{3}+3 s\right) Y(s)=s^{2}+1+\frac{2}{s^{2}+4}=\frac{s^{4}+5 s^{2}+6}{s^{2}+4}=\frac{\left(s^{2}+3\right)\left(s^{2}+2\right)}{s^{2}+4}
$$

Hence

$$
Y(s)=\frac{s^{2}+2}{s\left(s^{2}+4\right)}=\frac{1}{2} \frac{1}{s}+\frac{1}{2} \frac{s}{s^{2}+4}
$$

by partial fraction decomposition. Thus:

$$
y(t)=\frac{1}{2}+\frac{1}{2} \cos (2 t)
$$

Example: Use the Laplace transform method to solve the IVP

$$
y^{\prime \prime \prime}+3 y^{\prime}=\sin (2 t) \quad \text { with } y(0)=1, y^{\prime}(0)=0, y^{\prime \prime}(0)=-2
$$

Apply the Laplace transform to both sides:

$$
\mathcal{L}\left\{y^{\prime \prime \prime}\right\}(s)+3 \mathcal{L}\left\{y^{\prime}\right\}(s)=\mathcal{L}\{\sin (2 t)\}(s)
$$

Set $Y(s)=\mathcal{L}\{y\}(s)$.
By the formula for the Laplace transform of the derivatives of y :

$$
\left[s^{3} Y(s)-s^{2} y(0)-s y^{\prime}(0)-y^{\prime \prime}(0)\right]+3[s Y(s)-y(0)]=\frac{2}{s^{2}+4}
$$

Inserting the initial conditions:

$$
\left[s^{3} Y(s)-s^{2}+2\right]+3 s Y(s)-3=\frac{2}{s^{2}+4}
$$

i.e.

$$
\left(s^{3}+3 s\right) Y(s)=s^{2}+1+\frac{2}{s^{2}+4}=\frac{s^{4}+5 s^{2}+6}{s^{2}+4}=\frac{\left(s^{2}+3\right)\left(s^{2}+2\right)}{s^{2}+4}
$$

Hence

$$
Y(s)=\frac{s^{2}+2}{s\left(s^{2}+4\right)}=\frac{1}{2} \frac{1}{s}+\frac{1}{2} \frac{s}{s^{2}+4}
$$

by partial fraction decomposition. Thus:

$$
y(t)=\frac{1}{2}+\frac{1}{2} \cos (2 t)=\cos ^{2} t
$$

Laplace transform method for systems of 1st order linear DEs

Laplace transform method for systems of 1st order linear DEs

Consider an IVP for a system of first-order constant coefficient linear DE's :

$$
\left\{\begin{array}{l}
y_{1}^{\prime}=a_{11} y_{1}+a_{12} y_{2}+f_{1}(t) \\
y_{2}^{\prime}=a_{21} y_{1}+a_{22} y_{2}+f_{2}(t)
\end{array}\right.
$$

with initial conditions $y_{1}(0)=y_{10}, y_{2}(0)=y_{20}$.

Laplace transform method for systems of 1st order linear DEs

Consider an IVP for a system of first-order constant coefficient linear DE's :

$$
\left\{\begin{array}{l}
y_{1}^{\prime}=a_{11} y_{1}+a_{12} y_{2}+f_{1}(t) \\
y_{2}^{\prime}=a_{21} y_{1}+a_{22} y_{2}+f_{2}(t)
\end{array}\right.
$$

with initial conditions $y_{1}(0)=y_{10}, y_{2}(0)=y_{20}$.
Take the Laplace transform of each equation and set

$$
Y_{1}=\mathcal{L}\left\{y_{1}\right\}, \quad Y_{2}=\mathcal{L}\left\{y_{2}\right\}, \quad F_{1}=\mathcal{L}\left\{f_{1}\right\}, \quad F_{2}=\mathcal{L}\left\{f_{2}\right\} .
$$

Laplace transform method for systems of 1st order linear DEs

Consider an IVP for a system of first-order constant coefficient linear DE's :

$$
\left\{\begin{array}{l}
y_{1}^{\prime}=a_{11} y_{1}+a_{12} y_{2}+f_{1}(t) \\
y_{2}^{\prime}=a_{21} y_{1}+a_{22} y_{2}+f_{2}(t)
\end{array}\right.
$$

with initial conditions $y_{1}(0)=y_{10}, y_{2}(0)=y_{20}$.
Take the Laplace transform of each equation and set

$$
Y_{1}=\mathcal{L}\left\{y_{1}\right\}, \quad Y_{2}=\mathcal{L}\left\{y_{2}\right\}, \quad F_{1}=\mathcal{L}\left\{f_{1}\right\}, \quad F_{2}=\mathcal{L}\left\{f_{2}\right\} .
$$

We get:

$$
\left\{\begin{array}{l}
s Y_{1}-y_{1}(0)=a_{11} Y_{1}+a_{12} Y_{2}+F_{1}(t) \\
s Y_{2}-y_{2}(0)=a_{21} Y_{1}+a_{22} Y_{2}+F_{2}(t) .
\end{array}\right.
$$

Laplace transform method for systems of 1st order linear DEs

Consider an IVP for a system of first-order constant coefficient linear DE's :

$$
\left\{\begin{array}{l}
y_{1}^{\prime}=a_{11} y_{1}+a_{12} y_{2}+f_{1}(t) \\
y_{2}^{\prime}=a_{21} y_{1}+a_{22} y_{2}+f_{2}(t)
\end{array}\right.
$$

with initial conditions $y_{1}(0)=y_{10}, y_{2}(0)=y_{20}$.
Take the Laplace transform of each equation and set

$$
Y_{1}=\mathcal{L}\left\{y_{1}\right\}, \quad Y_{2}=\mathcal{L}\left\{y_{2}\right\}, \quad F_{1}=\mathcal{L}\left\{f_{1}\right\}, \quad F_{2}=\mathcal{L}\left\{f_{2}\right\} .
$$

We get:

$$
\left\{\begin{array}{l}
s Y_{1}-y_{1}(0)=a_{11} Y_{1}+a_{12} Y_{2}+F_{1}(t) \\
s Y_{2}-y_{2}(0)=a_{21} Y_{1}+a_{22} Y_{2}+F_{2}(t) .
\end{array}\right.
$$

This can be rewritten as

$$
\begin{cases}\left(s-a_{11}\right) Y_{1}-a_{12} Y_{2} & =y_{10}+F_{1}(s) \\ -a_{21} Y_{1}+\left(s-a_{22}\right) Y_{2} & =y_{20}+F_{2}(s)\end{cases}
$$

Laplace transform method for systems of 1st order linear DEs

Consider an IVP for a system of first-order constant coefficient linear DE's :

$$
\left\{\begin{array}{l}
y_{1}^{\prime}=a_{11} y_{1}+a_{12} y_{2}+f_{1}(t) \\
y_{2}^{\prime}=a_{21} y_{1}+a_{22} y_{2}+f_{2}(t)
\end{array}\right.
$$

with initial conditions $y_{1}(0)=y_{10}, y_{2}(0)=y_{20}$.
Take the Laplace transform of each equation and set

$$
Y_{1}=\mathcal{L}\left\{y_{1}\right\}, \quad Y_{2}=\mathcal{L}\left\{y_{2}\right\}, \quad F_{1}=\mathcal{L}\left\{f_{1}\right\}, \quad F_{2}=\mathcal{L}\left\{f_{2}\right\} .
$$

We get:

$$
\left\{\begin{array}{l}
s Y_{1}-y_{1}(0)=a_{11} Y_{1}+a_{12} Y_{2}+F_{1}(t) \\
s Y_{2}-y_{2}(0)=a_{21} Y_{1}+a_{22} Y_{2}+F_{2}(t) .
\end{array}\right.
$$

This can be rewritten as

$$
\begin{cases}\left(s-a_{11}\right) Y_{1}-a_{12} Y_{2} & =y_{10}+F_{1}(s) \\ -a_{21} Y_{1}+\left(s-a_{22}\right) Y_{2} & =y_{20}+F_{2}(s)\end{cases}
$$

This is a system of two linear equations in Y_{1} and Y_{2}.

Remark: The matrix form of $\begin{cases}\left(s-a_{11}\right) Y_{1}-a_{12} Y_{2} & =y_{10}+F_{1}(s) \\ -a_{21} Y_{1}+\left(s-a_{22}\right) Y_{2} & =y_{20}+F_{2}(s)\end{cases}$
is

$$
(s \mathbf{I}-\mathbf{A}) \mathbf{Y}=\mathbf{y}_{0}+\mathbf{F}(s)
$$

where

$$
\mathbf{A}=\left(\begin{array}{cc}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right), \quad \mathbf{F}(s)=\binom{F_{1}(s)}{F_{2}(s)}, \quad \mathbf{y}_{0}=\binom{y_{10}}{y_{20}}, \quad \mathbf{Y}=\binom{Y_{1}}{Y_{2}}
$$

Remark: The matrix form of $\begin{cases}\left(s-a_{11}\right) Y_{1}-a_{12} Y_{2} & =y_{10}+F_{1}(s) \\ -a_{21} Y_{1}+\left(s-a_{22}\right) Y_{2} & =y_{20}+F_{2}(s)\end{cases}$
is

$$
(s \mathbf{I}-\mathbf{A}) \mathbf{Y}=\mathbf{y}_{0}+\mathbf{F}(s)
$$

where

$$
\mathbf{A}=\left(\begin{array}{cc}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right), \quad \mathbf{F}(s)=\binom{F_{1}(s)}{F_{2}(s)}, \quad \mathbf{y}_{0}=\binom{y_{10}}{y_{20}}, \quad \mathbf{Y}=\binom{Y_{1}}{Y_{2}}
$$

If the matrix $\boldsymbol{s I}-\mathbf{A}$ is invertible, then we can solve for \mathbf{Y} :

$$
\mathbf{Y}=(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{y}_{0}+(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{F}(s)
$$

Remark: The matrix form of $\begin{cases}\left(s-a_{11}\right) Y_{1}-a_{12} Y_{2} & =y_{10}+F_{1}(s) \\ -a_{21} Y_{1}+\left(s-a_{22}\right) Y_{2} & =y_{20}+F_{2}(s)\end{cases}$ is

$$
(s \mathbf{I}-\mathbf{A}) \mathbf{Y}=\mathbf{y}_{0}+\mathbf{F}(s)
$$

where

$$
\mathbf{A}=\left(\begin{array}{cc}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right), \quad \mathbf{F}(s)=\binom{F_{1}(s)}{F_{2}(s)}, \quad \mathbf{y}_{0}=\binom{y_{10}}{y_{20}}, \quad \mathbf{Y}=\binom{Y_{1}}{Y_{2}}
$$

If the matrix $\boldsymbol{s l}-\mathbf{A}$ is invertible, then we can solve for \mathbf{Y} :

$$
\mathbf{Y}=(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{y}_{0}+(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{F}(s)
$$

Having determined Y_{1} and Y_{2}, the solution of of the given IVP is:

$$
\binom{y_{1}}{y_{2}}=\binom{\mathcal{L}^{-1}\left\{Y_{1}\right\}}{\mathcal{L}^{-1}\left\{Y_{2}\right\}}
$$

Remark: The matrix form of $\begin{cases}\left(s-a_{11}\right) Y_{1}-a_{12} Y_{2} & =y_{10}+F_{1}(s) \\ -a_{21} Y_{1}+\left(s-a_{22}\right) Y_{2} & =y_{20}+F_{2}(s)\end{cases}$
is

$$
(s \mathbf{I}-\mathbf{A}) \mathbf{Y}=\mathbf{y}_{0}+\mathbf{F}(s)
$$

where

$$
\mathbf{A}=\left(\begin{array}{cc}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right), \quad \mathbf{F}(s)=\binom{F_{1}(s)}{F_{2}(s)}, \quad \mathbf{y}_{0}=\binom{y_{10}}{y_{20}}, \quad \mathbf{Y}=\binom{Y_{1}}{Y_{2}}
$$

If the matrix $\boldsymbol{s I}-\mathbf{A}$ is invertible, then we can solve for \mathbf{Y} :

$$
\mathbf{Y}=(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{y}_{0}+(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{F}(s)
$$

Having determined Y_{1} and Y_{2}, the solution of of the given IVP is:

$$
\binom{y_{1}}{y_{2}}=\left(\begin{array}{ll}
\mathcal{L}^{-1} & \left\{Y_{1}\right\} \\
\mathcal{L}^{-1} & \left\{Y_{2}\right\}
\end{array}\right)
$$

Example: Use the Laplace transform method to solve the initial value problem

$$
\begin{aligned}
& y_{1}^{\prime}=-y_{1}+y_{2}+e^{t} \\
& y_{2}^{\prime}=y_{1}-y_{2}+e^{t}
\end{aligned}
$$

with $y_{1}(0)=1$ and $y_{2}(0)=1$

Solve $\left\{\begin{array}{l}y_{1}^{\prime}=-y_{1}+y_{2}+e^{t} \\ y_{2}^{\prime}=y_{1}-y_{2}+e^{t}\end{array} \quad\right.$ with $y_{1}(0)=1$ and $y_{2}(0)=1$

Solve $\left\{\begin{array}{l}y_{1}^{\prime}=-y_{1}+y_{2}+e^{t} \\ y_{2}^{\prime}=y_{1}-y_{2}+e^{t}\end{array} \quad\right.$ with $y_{1}(0)=1$ and $y_{2}(0)=1$
Apply the Laplace transform to both equations:

$$
\left\{\begin{array}{l}
\mathcal{L}\left\{y_{1}^{\prime}\right\}=-\mathcal{L}\left\{y_{1}\right\}+\mathcal{L}\left\{y_{2}\right\}+\mathcal{L}\left\{e^{t}\right\} \\
\mathcal{L}\left\{y_{2}^{\prime}\right\}=\mathcal{L}\left\{y_{1}\right\}-\mathcal{L}\left\{y_{2}\right\}+\mathcal{L}\left\{e^{t}\right\}
\end{array}\right.
$$

Solve $\left\{\begin{array}{l}y_{1}^{\prime}=-y_{1}+y_{2}+e^{t} \\ y_{2}^{\prime}=y_{1}-y_{2}+e^{t}\end{array} \quad\right.$ with $y_{1}(0)=1$ and $y_{2}(0)=1$
Apply the Laplace transform to both equations:

$$
\left\{\begin{array}{l}
\mathcal{L}\left\{y_{1}^{\prime}\right\}=-\mathcal{L}\left\{y_{1}\right\}+\mathcal{L}\left\{y_{2}\right\}+\mathcal{L}\left\{e^{t}\right\} \\
\mathcal{L}\left\{y_{2}^{\prime}\right\}=\mathcal{L}\left\{y_{1}\right\}-\mathcal{L}\left\{y_{2}\right\}+\mathcal{L}\left\{e^{t}\right\}
\end{array}\right.
$$

Set $Y_{1}=\mathcal{L}\left\{y_{1}\right\}$ and $Y_{2}=\mathcal{L}\left\{y_{2}\right\}$. Then

Solve $\left\{\begin{array}{l}y_{1}^{\prime}=-y_{1}+y_{2}+e^{t} \\ y_{2}^{\prime}=y_{1}-y_{2}+e^{t}\end{array} \quad\right.$ with $y_{1}(0)=1$ and $y_{2}(0)=1$
Apply the Laplace transform to both equations:

$$
\left\{\begin{array}{l}
\mathcal{L}\left\{y_{1}^{\prime}\right\}=-\mathcal{L}\left\{y_{1}\right\}+\mathcal{L}\left\{y_{2}\right\}+\mathcal{L}\left\{e^{t}\right\} \\
\mathcal{L}\left\{y_{2}^{\prime}\right\}=\mathcal{L}\left\{y_{1}\right\}-\mathcal{L}\left\{y_{2}\right\}+\mathcal{L}\left\{e^{t}\right\}
\end{array}\right.
$$

Set $Y_{1}=\mathcal{L}\left\{y_{1}\right\}$ and $Y_{2}=\mathcal{L}\left\{y_{2}\right\}$. Then

$$
\left\{\begin{array}{ll}
s Y_{1}(s)-y_{1}(0) & =-Y_{1}(s)+Y_{2}(s)+\frac{1}{s-1} \\
s Y_{2}(s)-y_{2}(0) & =Y_{1}(s)-Y_{2}(s)+\frac{1}{s-1}
\end{array} \quad(\text { for } s>1)\right.
$$

Solve $\left\{\begin{array}{l}y_{1}^{\prime}=-y_{1}+y_{2}+e^{t} \\ y_{2}^{\prime}=y_{1}-y_{2}+e^{t}\end{array} \quad\right.$ with $y_{1}(0)=1$ and $y_{2}(0)=1$
Apply the Laplace transform to both equations:

$$
\left\{\begin{array}{l}
\mathcal{L}\left\{y_{1}^{\prime}\right\}=-\mathcal{L}\left\{y_{1}\right\}+\mathcal{L}\left\{y_{2}\right\}+\mathcal{L}\left\{e^{t}\right\} \\
\mathcal{L}\left\{y_{2}^{\prime}\right\}=\mathcal{L}\left\{y_{1}\right\}-\mathcal{L}\left\{y_{2}\right\}+\mathcal{L}\left\{e^{t}\right\}
\end{array}\right.
$$

Set $Y_{1}=\mathcal{L}\left\{y_{1}\right\}$ and $Y_{2}=\mathcal{L}\left\{y_{2}\right\}$. Then

$$
\left\{\begin{array}{ll}
s Y_{1}(s)-y_{1}(0) & =-Y_{1}(s)+Y_{2}(s)+\frac{1}{s-1} \\
s Y_{2}(s)-y_{2}(0) & =Y_{1}(s)-Y_{2}(s)+\frac{1}{s-1}
\end{array} \quad(\text { for } s>1)\right.
$$

Hence

$$
\begin{cases}s Y_{1}(s)-1 & =-Y_{1}(s)+Y_{2}(s)+\frac{1}{s-1} \\ s Y_{2}(s)-1 & =Y_{1}(s)-Y_{2}(s)+\frac{1}{s-1}\end{cases}
$$

Solve $\left\{\begin{array}{l}y_{1}^{\prime}=-y_{1}+y_{2}+e^{t} \\ y_{2}^{\prime}=y_{1}-y_{2}+e^{t}\end{array} \quad\right.$ with $y_{1}(0)=1$ and $y_{2}(0)=1$
Apply the Laplace transform to both equations:

$$
\left\{\begin{array}{l}
\mathcal{L}\left\{y_{1}^{\prime}\right\}=-\mathcal{L}\left\{y_{1}\right\}+\mathcal{L}\left\{y_{2}\right\}+\mathcal{L}\left\{e^{t}\right\} \\
\mathcal{L}\left\{y_{2}^{\prime}\right\}=\mathcal{L}\left\{y_{1}\right\}-\mathcal{L}\left\{y_{2}\right\}+\mathcal{L}\left\{e^{t}\right\}
\end{array}\right.
$$

Set $Y_{1}=\mathcal{L}\left\{y_{1}\right\}$ and $Y_{2}=\mathcal{L}\left\{y_{2}\right\}$. Then

$$
\left\{\begin{array}{ll}
s Y_{1}(s)-y_{1}(0) & =-Y_{1}(s)+Y_{2}(s)+\frac{1}{s-1} \\
s Y_{2}(s)-y_{2}(0) & =Y_{1}(s)-Y_{2}(s)+\frac{1}{s-1}
\end{array} \quad(\text { for } s>1)\right.
$$

Hence

$$
\begin{cases}s Y_{1}(s)-1 & =-Y_{1}(s)+Y_{2}(s)+\frac{1}{s-1} \\ s Y_{2}(s)-1 & =Y_{1}(s)-Y_{2}(s)+\frac{1}{s-1}\end{cases}
$$

i.e.

$$
\begin{cases}(s+1) Y_{1}(s)-Y_{2}(s) & =1+\frac{1}{s-1} \\ -Y_{1}(s)+(s+1) Y_{2}(s) & =1+\frac{1}{s-1}\end{cases}
$$

Solve $\left\{\begin{array}{l}y_{1}^{\prime}=-y_{1}+y_{2}+e^{t} \\ y_{2}^{\prime}=y_{1}-y_{2}+e^{t}\end{array} \quad\right.$ with $y_{1}(0)=1$ and $y_{2}(0)=1$
Apply the Laplace transform to both equations:

$$
\left\{\begin{array}{l}
\mathcal{L}\left\{y_{1}^{\prime}\right\}=-\mathcal{L}\left\{y_{1}\right\}+\mathcal{L}\left\{y_{2}\right\}+\mathcal{L}\left\{e^{t}\right\} \\
\mathcal{L}\left\{y_{2}^{\prime}\right\}=\mathcal{L}\left\{y_{1}\right\}-\mathcal{L}\left\{y_{2}\right\}+\mathcal{L}\left\{e^{t}\right\}
\end{array}\right.
$$

Set $Y_{1}=\mathcal{L}\left\{y_{1}\right\}$ and $Y_{2}=\mathcal{L}\left\{y_{2}\right\}$. Then

$$
\left\{\begin{array}{ll}
s Y_{1}(s)-y_{1}(0) & =-Y_{1}(s)+Y_{2}(s)+\frac{1}{s-1} \\
s Y_{2}(s)-y_{2}(0) & =Y_{1}(s)-Y_{2}(s)+\frac{1}{s-1}
\end{array} \quad(\text { for } s>1)\right.
$$

Hence

$$
\begin{cases}s Y_{1}(s)-1 & =-Y_{1}(s)+Y_{2}(s)+\frac{1}{s-1} \\ s Y_{2}(s)-1 & =Y_{1}(s)-Y_{2}(s)+\frac{1}{s-1}\end{cases}
$$

i.e.

$$
\begin{cases}(s+1) Y_{1}(s)-Y_{2}(s) & =1+\frac{1}{s-1} \\ -Y_{1}(s)+(s+1) Y_{2}(s) & =1+\frac{1}{s-1}\end{cases}
$$

This system of linear equations has solutions

$$
Y_{1}(s)=Y_{2}(s)=\frac{1}{s-1} \quad(\text { for } s>1)
$$

Solve $\left\{\begin{array}{l}y_{1}^{\prime}=-y_{1}+y_{2}+e^{t} \\ y_{2}^{\prime}=y_{1}-y_{2}+e^{t}\end{array} \quad\right.$ with $y_{1}(0)=1$ and $y_{2}(0)=1$
Apply the Laplace transform to both equations:

$$
\left\{\begin{array}{l}
\mathcal{L}\left\{y_{1}^{\prime}\right\}=-\mathcal{L}\left\{y_{1}\right\}+\mathcal{L}\left\{y_{2}\right\}+\mathcal{L}\left\{e^{t}\right\} \\
\mathcal{L}\left\{y_{2}^{\prime}\right\}=\mathcal{L}\left\{y_{1}\right\}-\mathcal{L}\left\{y_{2}\right\}+\mathcal{L}\left\{e^{t}\right\}
\end{array}\right.
$$

Set $Y_{1}=\mathcal{L}\left\{y_{1}\right\}$ and $Y_{2}=\mathcal{L}\left\{y_{2}\right\}$. Then

$$
\left\{\begin{array}{ll}
s Y_{1}(s)-y_{1}(0) & =-Y_{1}(s)+Y_{2}(s)+\frac{1}{s-1} \\
s Y_{2}(s)-y_{2}(0) & =Y_{1}(s)-Y_{2}(s)+\frac{1}{s-1}
\end{array} \quad(\text { for } s>1)\right.
$$

Hence

$$
\begin{cases}s Y_{1}(s)-1 & =-Y_{1}(s)+Y_{2}(s)+\frac{1}{s-1} \\ s Y_{2}(s)-1 & =Y_{1}(s)-Y_{2}(s)+\frac{1}{s-1}\end{cases}
$$

i.e.

$$
\begin{cases}(s+1) Y_{1}(s)-Y_{2}(s) & =1+\frac{1}{s-1} \\ -Y_{1}(s)+(s+1) Y_{2}(s) & =1+\frac{1}{s-1}\end{cases}
$$

This system of linear equations has solutions

$$
Y_{1}(s)=Y_{2}(s)=\frac{1}{s-1} \quad(\text { for } s>1)
$$

Taking their inverse Laplace transform:

$$
y_{1}(t)=y_{2}(t)=\mathcal{L}^{-1}\left\{\frac{1}{s-1}\right\}=e^{t}
$$

