Section 5.5: Discontinuous functions and periodic functions

Main Topics:

- Unit step functions,
- indicator functions,
- translates of functions,
- periodic functions,
- and their Laplace transforms.

Unit step functions

Definition

For a real number c, the unit step function u_{c} is defined by $u_{c}(t)=\left\{\begin{array}{ll}0 & \text { if } t<c \\ 1 & \text { if } t \geq c\end{array}\right.$.

Unit step functions

Definition

For a real number c, the unit step function u_{c} is defined by $u_{c}(t)=\left\{\begin{array}{ll}0 & \text { if } t<c \\ 1 & \text { if } t \geq c\end{array}\right.$.

- $u_{c}(t)$ is piecewise continuous but not continuous.
- When $c=0$, the unit step function is known as the Heaviside function.
- The definition of the value of u_{c} at the jump discontinuity $t=c$ is immaterial. We could just not define it at all at c.

Indicator functions

Definition

For real numbers $c<d$, the indicator function for the interval $[c, d)$ is the function $u_{c d}$ defined by

$$
u_{c d}(t)= \begin{cases}0 & \text { if } t<c \text { or } t \geq d \\ 1 & \text { if } c \leq t<d\end{cases}
$$

Indicator functions

Definition

For real numbers $c<d$, the indicator function for the interval $[c, d)$ is the function $u_{c d}$ defined by

$$
u_{c d}(t)= \begin{cases}0 & \text { if } t<c \text { or } t \geq d \\ 1 & \text { if } c \leq t<d\end{cases}
$$

- $u_{c d}$ is piecewise continuous but is not continuous.
- As for u_{c}, the value of $u_{c d}$ at the jump discontinuities is immaterial. We could just not define them at all at c and d.

Representation of piecewise continuous functions

Example:

(1) Use the unit step functions to give a representation of the piecewise continuous function

$$
f(t)= \begin{cases}t & \text { if } 0 \leq t<2 \\ 1 & \text { if } 2 \leq t<3 \\ e^{-2 t} & \text { if } t \geq 3\end{cases}
$$

Representation of piecewise continuous functions

Example:

(1) Use the unit step functions to give a representation of the piecewise continuous function

$$
\begin{gathered}
f(t)= \begin{cases}t & \text { if } 0 \leq t<2 \\
1 & \text { if } 2 \leq t<3 \\
e^{-2 t} & \text { if } t \geq 3\end{cases} \\
f(t)=t \cdot u_{02}(t)+1 \cdot u_{23}(t)+e^{-2 t} \cdot u_{3}(t)
\end{gathered}
$$

Representation of piecewise continuous functions

Example:

(1) Use the unit step functions to give a representation of the piecewise continuous function

$$
f(t)= \begin{cases}t & \text { if } 0 \leq t<2 \\ 1 & \text { if } 2 \leq t<3 \\ e^{-2 t} & \text { if } t \geq 3\end{cases}
$$

$$
\begin{aligned}
f(t) & =t \cdot u_{02}(t)+1 \cdot u_{23}(t)+e^{-2 t} \cdot u_{3}(t) \\
& =t\left(u_{0}(t)-u_{2}(t)\right)+\left(u_{2}(t)-u_{3}(t)\right)+e^{-2 t} u_{3}(t)
\end{aligned}
$$

Representation of piecewise continuous functions

Example:

(1) Use the unit step functions to give a representation of the piecewise continuous function

$$
f(t)= \begin{cases}t & \text { if } 0 \leq t<2 \\ 1 & \text { if } 2 \leq t<3 \\ e^{-2 t} & \text { if } t \geq 3\end{cases}
$$

$$
\begin{aligned}
f(t) & =t \cdot u_{02}(t)+1 \cdot u_{23}(t)+e^{-2 t} \cdot u_{3}(t) \\
& =t\left(u_{0}(t)-u_{2}(t)\right)+\left(u_{2}(t)-u_{3}(t)\right)+e^{-2 t} u_{3}(t) \\
& =t u_{0}(t)-(t-1) u_{2}(t)+\left(e^{-2 t}-1\right) u_{3}(t)
\end{aligned}
$$

Representation of piecewise continuous functions

Example:

(1) Use the unit step functions to give a representation of the piecewise continuous function

$$
f(t)= \begin{cases}t & \text { if } 0 \leq t<2 \\ 1 & \text { if } 2 \leq t<3 \\ e^{-2 t} & \text { if } t \geq 3\end{cases}
$$

$$
\begin{aligned}
f(t) & =t \cdot u_{02}(t)+1 \cdot u_{23}(t)+e^{-2 t} \cdot u_{3}(t) \\
& =t\left(u_{0}(t)-u_{2}(t)\right)+\left(u_{2}(t)-u_{3}(t)\right)+e^{-2 t} u_{3}(t) \\
& =t u_{0}(t)-(t-1) u_{2}(t)+\left(e^{-2 t}-1\right) u_{3}(t)
\end{aligned}
$$

Since $u_{0}(t)=1$ for all $t \geq 0$, when we restrict ourselves to $t \geq 0$, we can write:

$$
f(t)=t-(t-1) u_{2}(t)+\left(e^{-2 t}-1\right) u_{3}(t) \quad(t \geq 0) .
$$

Laplace transforms of u_{c} and $u_{c d}$

- For $s>0$

$$
\mathcal{L}\left\{u_{c}\right\}(s)=\frac{e^{-c s}}{s}
$$

Laplace transforms of u_{c} and $u_{c d}$

- For $s>0$

$$
\mathcal{L}\left\{u_{c}\right\}(s)=\frac{e^{-c s}}{s}
$$

Indeed,

$$
\mathcal{L}\left\{u_{c}\right\}(s)=\int_{0}^{\infty} e^{-s t} u_{c}(t) d t
$$

Laplace transforms of u_{c} and $u_{c d}$

- For $s>0$

$$
\mathcal{L}\left\{u_{c}\right\}(s)=\frac{e^{-c s}}{s}
$$

Indeed,

$$
\mathcal{L}\left\{u_{c}\right\}(s)=\int_{0}^{\infty} e^{-s t} u_{c}(t) d t=\int_{c}^{\infty} e^{-s t} d t
$$

Laplace transforms of u_{c} and $u_{c d}$

- For $s>0$

$$
\mathcal{L}\left\{u_{c}\right\}(s)=\frac{e^{-c s}}{s}
$$

Indeed,

$$
\mathcal{L}\left\{u_{c}\right\}(s)=\int_{0}^{\infty} e^{-s t} u_{c}(t) d t=\int_{c}^{\infty} e^{-s t} d t=\lim _{A \rightarrow+\infty} \int_{c}^{A} e^{-s t} d t
$$

Laplace transforms of u_{c} and $u_{c d}$

- For $s>0$

$$
\mathcal{L}\left\{u_{c}\right\}(s)=\frac{e^{-c s}}{s}
$$

Indeed,

$$
\begin{aligned}
\mathcal{L}\left\{u_{c}\right\}(s) & =\int_{0}^{\infty} e^{-s t} u_{c}(t) d t=\int_{c}^{\infty} e^{-s t} d t=\lim _{A \rightarrow+\infty} \int_{c}^{A} e^{-s t} d t \\
& =\lim _{A \rightarrow+\infty}\left(\frac{e^{-c s}}{s}-\frac{e^{-c A}}{s}\right)
\end{aligned}
$$

Laplace transforms of u_{c} and $u_{c d}$

- For $s>0$

$$
\mathcal{L}\left\{u_{c}\right\}(s)=\frac{e^{-c s}}{s}
$$

Indeed,

$$
\begin{aligned}
\mathcal{L}\left\{u_{c}\right\}(s) & =\int_{0}^{\infty} e^{-s t} u_{c}(t) d t=\int_{c}^{\infty} e^{-s t} d t=\lim _{A \rightarrow+\infty} \int_{c}^{A} e^{-s t} d t \\
& =\lim _{A \rightarrow+\infty}\left(\frac{e^{-c s}}{s}-\frac{e^{-c A}}{s}\right)=\frac{e^{-c s}}{s}
\end{aligned}
$$

Laplace transforms of u_{c} and $u_{c d}$

- For $s>0$

$$
\mathcal{L}\left\{u_{c}\right\}(s)=\frac{e^{-c s}}{s}
$$

Indeed,

$$
\begin{aligned}
\mathcal{L}\left\{u_{c}\right\}(s) & =\int_{0}^{\infty} e^{-s t} u_{c}(t) d t=\int_{c}^{\infty} e^{-s t} d t=\lim _{A \rightarrow+\infty} \int_{c}^{A} e^{-s t} d t \\
& =\lim _{A \rightarrow+\infty}\left(\frac{e^{-c s}}{s}-\frac{e^{-c A}}{s}\right)=\frac{e^{-c s}}{s}
\end{aligned}
$$

Remark: For $s>0$ we have $\mathcal{L}\left\{u_{0}\right\}(s)=\frac{1}{s}=\mathcal{L}\{1\}(s)$.
This is correct because $u_{0}(t)=1$ for $t>0$.

Laplace transforms of u_{c} and $u_{c d}$

- For $s>0$

$$
\mathcal{L}\left\{u_{c}\right\}(s)=\frac{e^{-c s}}{s}
$$

Indeed,

$$
\begin{aligned}
\mathcal{L}\left\{u_{c}\right\}(s) & =\int_{0}^{\infty} e^{-s t} u_{c}(t) d t=\int_{c}^{\infty} e^{-s t} d t=\lim _{A \rightarrow+\infty} \int_{c}^{A} e^{-s t} d t \\
& =\lim _{A \rightarrow+\infty}\left(\frac{e^{-c s}}{s}-\frac{e^{-c A}}{s}\right)=\frac{e^{-c s}}{s}
\end{aligned}
$$

Remark: For $s>0$ we have $\mathcal{L}\left\{u_{0}\right\}(s)=\frac{1}{s}=\mathcal{L}\{1\}(s)$.
This is correct because $u_{0}(t)=1$ for $t>0$.

- Consequence: for $s>0$

$$
\mathcal{L}\left\{u_{c d}\right\}(s)=\mathcal{L}\left\{u_{c}\right\}(s)-\mathcal{L}\left\{u_{d}\right\}(s)=\frac{e^{-c s}-e^{-d s}}{s}
$$

Translate of a function

Definition

Fix $c \geq 0$ a real number and let f be a function defined for $t \geq 0$. The translate of f is the function g defined by

$$
g(t)=\left\{\begin{array}{ll}
0 & \text { if } t<c \\
f(t-c) & \text { if } t \geq c
\end{array}=u_{c}(t) f(t-c)\right.
$$

(a)

(b)

FIGURE 5.5.3 A translation of the given function. (a) $y=f(t) ;(b) y=u_{c}(t) f(t-c)$.

Translate of a function

Definition

Fix $c \geq 0$ a real number and let f be a function defined for $t \geq 0$. The translate of f is the function g defined by

$$
g(t)=\left\{\begin{array}{ll}
0 & \text { if } t<c \\
f(t-c) & \text { if } t \geq c
\end{array}=u_{c}(t) f(t-c)\right.
$$

(a)

(b)

FIGURE 5.5.3 A translation of the given function. (a) $y=f(t) ;(b) y=u_{c}(t) f(t-c)$.

Theorem (Theorem 5.5.1)
Suppose $\mathcal{L}\{f\}(s)$ exists for $s>a \geq 0$. Let $c \geq 0$. Then for $s>a \geq 0$,

$$
\mathcal{L}\left\{u_{c}(t) f(t-c)\right\}(s)=e^{-c s} \mathcal{L}\{f\}(s)
$$

Example:

(1) Compute the Laplace transform of $f(t)=\left\{\begin{array}{ll}t & \text { if } 0<t<2 \\ 1 & \text { if } 2 \leq t<3 . \\ e^{-2 t} & \text { if } t \geq 3\end{array}\right.$.

Example:

(1) Compute the Laplace transform of $f(t)=\left\{\begin{array}{ll}t & \text { if } 0<t<2 \\ 1 & \text { if } 2 \leq t<3 . \\ e^{-2 t} & \text { if } t \geq 3\end{array}\right.$.

We have found (see p. 4):

$$
f(t)=t u_{0}(t)-(t-1) u_{2}(t)+\left(e^{-2 t}-1\right) u_{3}(t) .
$$

Example:

(1) Compute the Laplace transform of $f(t)=\left\{\begin{array}{ll}t & \text { if } 0<t<2 \\ 1 & \text { if } 2 \leq t<3 . \\ e^{-2 t} & \text { if } t \geq 3\end{array}\right.$.

We have found (see p. 4):

$$
f(t)=t u_{0}(t)-(t-1) u_{2}(t)+\left(e^{-2 t}-1\right) u_{3}(t) .
$$

This can be rewritten as:

$$
f(t)=u_{0}(t) f_{0}(t-0)-u_{2}(t) f_{2}(t-2)+u_{3}(t) f_{3}(t-3)
$$

Example:

(1) Compute the Laplace transform of $f(t)=\left\{\begin{array}{ll}t & \text { if } 0<t<2 \\ 1 & \text { if } 2 \leq t<3 . \\ e^{-2 t} & \text { if } t \geq 3\end{array}\right.$.

We have found (see p. 4):

$$
f(t)=t u_{0}(t)-(t-1) u_{2}(t)+\left(e^{-2 t}-1\right) u_{3}(t) .
$$

This can be rewritten as:

$$
f(t)=u_{0}(t) f_{0}(t-0)-u_{2}(t) f_{2}(t-2)+u_{3}(t) f_{3}(t-3)
$$

where

$$
f_{0}(t)=t, \quad f_{2}(t)=t+1, \quad f_{3}(t)=e^{-2(t+3)}-1=e^{-6} e^{-2 t}-1 .
$$

Example:

(1) Compute the Laplace transform of $f(t)=\left\{\begin{array}{ll}t & \text { if } 0<t<2 \\ 1 & \text { if } 2 \leq t<3 . \\ e^{-2 t} & \text { if } t \geq 3\end{array}\right.$.

We have found (see p. 4):

$$
f(t)=t u_{0}(t)-(t-1) u_{2}(t)+\left(e^{-2 t}-1\right) u_{3}(t) .
$$

This can be rewritten as:

$$
f(t)=u_{0}(t) f_{0}(t-0)-u_{2}(t) f_{2}(t-2)+u_{3}(t) f_{3}(t-3)
$$

where

$$
f_{0}(t)=t, \quad f_{2}(t)=t+1, \quad f_{3}(t)=e^{-2(t+3)}-1=e^{-6} e^{-2 t}-1 .
$$

Hence for $s>0$:

$$
\mathcal{L}\{f\}(s)=\mathcal{L}\left\{u_{0}(t) f_{1}(t-0)\right\}(s)-\mathcal{L}\left\{u_{2}(t) f_{2}(t-2)\right\}(s)+\mathcal{L}\left\{u_{3}(t) f_{3}(t-3)\right\}(s)
$$

Example:

(1) Compute the Laplace transform of $f(t)=\left\{\begin{array}{ll}t & \text { if } 0<t<2 \\ 1 & \text { if } 2 \leq t<3 . \\ e^{-2 t} & \text { if } t \geq 3\end{array}\right.$.

We have found (see p. 4):

$$
f(t)=t u_{0}(t)-(t-1) u_{2}(t)+\left(e^{-2 t}-1\right) u_{3}(t) .
$$

This can be rewritten as:

$$
f(t)=u_{0}(t) f_{0}(t-0)-u_{2}(t) f_{2}(t-2)+u_{3}(t) f_{3}(t-3)
$$

where

$$
f_{0}(t)=t, \quad f_{2}(t)=t+1, \quad f_{3}(t)=e^{-2(t+3)}-1=e^{-6} e^{-2 t}-1 .
$$

Hence for $s>0$:

$$
\begin{aligned}
\mathcal{L}\{f\}(s) & =\mathcal{L}\left\{u_{0}(t) f_{1}(t-0)\right\}(s)-\mathcal{L}\left\{u_{2}(t) f_{2}(t-2)\right\}(s)+\mathcal{L}\left\{u_{3}(t) f_{3}(t-3)\right\}(s) \\
& =\mathcal{L}\left\{f_{0}(t)\right\}(s)+e^{-2 s} \mathcal{L}\left\{f_{2}(t)\right\}(s)+e^{-3 s} \mathcal{L}\left\{f_{3}(t)\right\}(s)
\end{aligned}
$$

Example:

(1) Compute the Laplace transform of $f(t)=\left\{\begin{array}{ll}t & \text { if } 0<t<2 \\ 1 & \text { if } 2 \leq t<3 \\ e^{-2 t} & \text { if } t \geq 3\end{array}\right.$.

We have found (see p. 4):

$$
f(t)=t u_{0}(t)-(t-1) u_{2}(t)+\left(e^{-2 t}-1\right) u_{3}(t) .
$$

This can be rewritten as:

$$
f(t)=u_{0}(t) f_{0}(t-0)-u_{2}(t) f_{2}(t-2)+u_{3}(t) f_{3}(t-3)
$$

where

$$
f_{0}(t)=t, \quad f_{2}(t)=t+1, \quad f_{3}(t)=e^{-2(t+3)}-1=e^{-6} e^{-2 t}-1 .
$$

Hence for $s>0$:

$$
\begin{aligned}
\mathcal{L}\{f\}(s) & =\mathcal{L}\left\{u_{0}(t) f_{1}(t-0)\right\}(s)-\mathcal{L}\left\{u_{2}(t) f_{2}(t-2)\right\}(s)+\mathcal{L}\left\{u_{3}(t) f_{3}(t-3)\right\}(s) \\
& =\mathcal{L}\left\{f_{0}(t)\right\}(s)+e^{-2 s} \mathcal{L}\left\{f_{2}(t)\right\}(s)+e^{-3 s} \mathcal{L}\left\{f_{3}(t)\right\}(s) \\
& =\frac{1}{s^{2}}-e^{-2 s} \frac{1+s}{s^{2}}+e^{-3 s}\left(\frac{e^{-6}}{s+2}-\frac{1}{s}\right)
\end{aligned}
$$

(2) Express the inverse Laplace transform f of

$$
F(s)=\frac{1-e^{-2 s}}{s^{2}}
$$

in terms of a unit step function.
(2) Express the inverse Laplace transform f of

$$
F(s)=\frac{1-e^{-2 s}}{s^{2}}
$$

in terms of a unit step function.
We have

$$
\mathcal{L}^{-1}\{F(s)\}=\mathcal{L}^{-1}\left\{\frac{1}{s^{2}}\right\}-\mathcal{L}^{-1}\left\{\frac{e^{-2 s}}{s^{2}}\right\}
$$

(2) Express the inverse Laplace transform f of

$$
F(s)=\frac{1-e^{-2 s}}{s^{2}}
$$

in terms of a unit step function.
We have

$$
\begin{aligned}
\mathcal{L}^{-1}\{F(s)\} & =\mathcal{L}^{-1}\left\{\frac{1}{s^{2}}\right\}-\mathcal{L}^{-1}\left\{\frac{e^{-2 s}}{s^{2}}\right\} \\
& =t-u_{2}(t)(t-2)
\end{aligned}
$$

(2) Express the inverse Laplace transform f of

$$
F(s)=\frac{1-e^{-2 s}}{s^{2}}
$$

in terms of a unit step function.

We have

$$
\begin{aligned}
\mathcal{L}^{-1}\{F(s)\} & =\mathcal{L}^{-1}\left\{\frac{1}{s^{2}}\right\}-\mathcal{L}^{-1}\left\{\frac{e^{-2 s}}{s^{2}}\right\} \\
& =t-u_{2}(t)(t-2)
\end{aligned}
$$

Hence

$$
f(t)= \begin{cases}t & \text { if } 0 \leq t<2 \\ 2 & \text { if } t \geq 2\end{cases}
$$

Periodic functions

Definition (Definition 5.5.2)
A function f is said to be periodic with period $T>0$ if $f(t+T)=f(t)$ for all t in the domain of f.

Periodic functions

Definition (Definition 5.5.2)

A function f is said to be periodic with period $T>0$ if $f(t+T)=f(t)$ for all t in the domain of f.

- The sine and cosine functions are 2π-periodic, while the tangent function is π-periodic.

Periodic functions

Definition (Definition 5.5.2)

A function f is said to be periodic with period $T>0$ if $f(t+T)=f(t)$ for all t in the domain of f.

- The sine and cosine functions are 2π-periodic, while the tangent function is π-periodic.
- $f(t)=\left\{\begin{array}{ll}1-t & \text { if } 0 \leq t<1 \\ 0 & \text { if } 1 \leq t<2\end{array}\right.$ can be turned into a 2-periodic function as follows:

A key property of T-periodic functions is that they can be studied only on any interval of length T. For this, it is convenient to introduce the window function $f_{T}(t)$ associated with f :

$$
f_{T}(t)=f(t)\left(1-u_{T}(t)\right)= \begin{cases}f(t) & \text { if } 0 \leq t \leq T \\ 0 & \text { otherwise }\end{cases}
$$

A key property of T-periodic functions is that they can be studied only on any interval of length T. For this, it is convenient to introduce the window function $f_{T}(t)$ associated with f :

$$
f_{T}(t)=f(t)\left(1-u_{T}(t)\right)= \begin{cases}f(t) & \text { if } 0 \leq t \leq T \\ 0 & \text { otherwise }\end{cases}
$$

Write $F_{T}(s)=\mathcal{L}\left\{f_{T}\right\}(s)$ for the Laplace transform of f_{T} :

$$
F_{T}(s)=\int_{0}^{\infty} f_{T}(t) e^{-s t} d t=\int_{0}^{T} f(t) e^{-s t} d t
$$

A key property of T-periodic functions is that they can be studied only on any interval of length T. For this, it is convenient to introduce the window function $f_{T}(t)$ associated with f :

$$
f_{T}(t)=f(t)\left(1-u_{T}(t)\right)= \begin{cases}f(t) & \text { if } 0 \leq t \leq T \\ 0 & \text { otherwise }\end{cases}
$$

Write $F_{T}(s)=\mathcal{L}\left\{f_{T}\right\}(s)$ for the Laplace transform of f_{T} :

$$
F_{T}(s)=\int_{0}^{\infty} f_{T}(t) e^{-s t} d t=\int_{0}^{T} f(t) e^{-s t} d t
$$

Theorem (Theorem 5.5.3)

If f is T-periodic and piecewise continuous on $[0, T]$, then $\quad \mathcal{L}\{f\}(s)=\frac{F_{T}(s)}{1-e^{-s T}}$

A key property of T-periodic functions is that they can be studied only on any interval of length T. For this, it is convenient to introduce the window function $f_{T}(t)$ associated with f :

$$
f_{T}(t)=f(t)\left(1-u_{T}(t)\right)= \begin{cases}f(t) & \text { if } 0 \leq t \leq T \\ 0 & \text { otherwise }\end{cases}
$$

Write $F_{T}(s)=\mathcal{L}\left\{f_{T}\right\}(s)$ for the Laplace transform of f_{T} :

$$
F_{T}(s)=\int_{0}^{\infty} f_{T}(t) e^{-s t} d t=\int_{0}^{T} f(t) e^{-s t} d t
$$

Theorem (Theorem 5.5.3)

If f is T-periodic and piecewise continuous on $[0, T]$, then $\quad \mathcal{L}\{f\}(s)=\frac{F_{T}(s)}{1-e^{-s T}}$

Example:

Compute the Laplace transform of the 2-periodic function f defined on $[0,2)$ by
$f(t)= \begin{cases}t & \text { if } 0 \leq t<1 \\ 0 & \text { if } 1 \leq t<2\end{cases}$

A key property of T-periodic functions is that they can be studied only on any interval of length T. For this, it is convenient to introduce the window function $f_{T}(t)$ associated with f :

$$
f_{T}(t)=f(t)\left(1-u_{T}(t)\right)= \begin{cases}f(t) & \text { if } 0 \leq t \leq T \\ 0 & \text { otherwise }\end{cases}
$$

Write $F_{T}(s)=\mathcal{L}\left\{f_{T}\right\}(s)$ for the Laplace transform of f_{T} :

$$
F_{T}(s)=\int_{0}^{\infty} f_{T}(t) e^{-s t} d t=\int_{0}^{T} f(t) e^{-s t} d t
$$

Theorem (Theorem 5.5.3)

If f is T-periodic and piecewise continuous on $[0, T]$, then $\quad \mathcal{L}\{f\}(s)=\frac{F_{T}(s)}{1-e^{-s T}}$

Example:

Compute the Laplace transform of the 2-periodic function f defined on $[0,2)$ by $f(t)= \begin{cases}t & \text { if } 0 \leq t<1 \\ 0 & \text { if } 1 \leq t<2\end{cases}$
Here $T=2$ and $F_{2}(s)=\int_{0}^{2} f_{T}(t) d t=\int_{0}^{1} t e^{-s t} d t=\frac{1-e^{-s}}{s^{2}}-\frac{e^{-s}}{s}$.
So, $F(s)=\mathcal{L}\{f\}(s)=\frac{1-e^{-s}}{s^{2}\left(1-e^{-2 s}\right)}-\frac{e^{-s}}{s\left(1-e^{-2 s}\right)}$.

Example:
 Compute the inverse Laplace transform of the function $F(s)=\frac{1}{s\left(1+e^{-s}\right)}$

Example:
 Compute the inverse Laplace transform of the function $F(s)=\frac{1}{s\left(1+e^{-s}\right)}$

We want to have a denominator of the form $1-e^{-T s}$.

Example:
 Compute the inverse Laplace transform of the function $F(s)=\frac{1}{s\left(1+e^{-s}\right)}$

We want to have a denominator of the form $1-e^{-T s}$.
For this: $1-e^{-2 s}=\left(1-e^{-s}\right)\left(1+e^{-s}\right)$.

Example:

Compute the inverse Laplace transform of the function $F(s)=\frac{1}{s\left(1+e^{-s}\right)}$

We want to have a denominator of the form $1-e^{-T s}$. For this: $1-e^{-2 s}=\left(1-e^{-s}\right)\left(1+e^{-s}\right)$. Hence:

$$
F(s)=\frac{1}{s\left(1+e^{-s}\right)}
$$

Example:

Compute the inverse Laplace transform of the function $F(s)=\frac{1}{s\left(1+e^{-s}\right)}$

We want to have a denominator of the form $1-e^{-T s}$. For this: $1-e^{-2 s}=\left(1-e^{-s}\right)\left(1+e^{-s}\right)$. Hence:

$$
F(s)=\frac{1}{s\left(1+e^{-s}\right)}=\frac{\left(1-e^{-s}\right)}{s\left(1-e^{-s}\right)\left(1+e^{-s}\right)}
$$

Example:

Compute the inverse Laplace transform of the function $F(s)=\frac{1}{s\left(1+e^{-s}\right)}$

We want to have a denominator of the form $1-e^{-T s}$.
For this: $1-e^{-2 s}=\left(1-e^{-s}\right)\left(1+e^{-s}\right)$. Hence:

$$
F(s)=\frac{1}{s\left(1+e^{-s}\right)}=\frac{\left(1-e^{-s}\right)}{s\left(1-e^{-s}\right)\left(1+e^{-s}\right)}=\frac{\left(1-e^{-s}\right)}{s\left(1-e^{-2 s}\right)}
$$

Example:

Compute the inverse Laplace transform of the function $F(s)=\frac{1}{s\left(1+e^{-s}\right)}$

We want to have a denominator of the form $1-e^{-T s}$.
For this: $1-e^{-2 s}=\left(1-e^{-s}\right)\left(1+e^{-s}\right)$. Hence:

$$
F(s)=\frac{1}{s\left(1+e^{-s}\right)}=\frac{\left(1-e^{-s}\right)}{s\left(1-e^{-s}\right)\left(1+e^{-s}\right)}=\frac{\left(1-e^{-s}\right)}{s\left(1-e^{-2 s}\right)}=\underbrace{\frac{\left(1-e^{-s}\right)}{s}}_{F_{2}(s)} \underbrace{\frac{1}{\left(1-e^{-2 s}\right)}}_{\begin{array}{c}
\text { as above, with } \\
\text { period } T=2
\end{array}}
$$

Example:

Compute the inverse Laplace transform of the function $F(s)=\frac{1}{s\left(1+e^{-s}\right)}$

We want to have a denominator of the form $1-e^{-T s}$.
For this: $1-e^{-2 s}=\left(1-e^{-s}\right)\left(1+e^{-s}\right)$. Hence:

$$
F(s)=\frac{1}{s\left(1+e^{-s}\right)}=\frac{\left(1-e^{-s}\right)}{s\left(1-e^{-s}\right)\left(1+e^{-s}\right)}=\frac{\left(1-e^{-s}\right)}{s\left(1-e^{-2 s}\right)}=\underbrace{\frac{\left(1-e^{-s}\right)}{s}}_{F_{2}(s)} \underbrace{\frac{1}{\left(1-e^{-2 s}\right)}}_{\substack{\text { as above, with } \\ \text { period } T=2}}
$$

For $0 \leq t \leq 2$:

$$
\mathcal{L}^{-1}\left\{F_{2}\right\}(t)=\mathcal{L}^{-1}\left\{\frac{1}{s}\right\}(t)-\mathcal{L}^{-1}\left\{\frac{e^{-s}}{s}\right\}(t)
$$

Example:

Compute the inverse Laplace transform of the function $F(s)=\frac{1}{s\left(1+e^{-s}\right)}$

We want to have a denominator of the form $1-e^{-T s}$.
For this: $1-e^{-2 s}=\left(1-e^{-s}\right)\left(1+e^{-s}\right)$. Hence:

$$
F(s)=\frac{1}{s\left(1+e^{-s}\right)}=\frac{\left(1-e^{-s}\right)}{s\left(1-e^{-s}\right)\left(1+e^{-s}\right)}=\frac{\left(1-e^{-s}\right)}{s\left(1-e^{-2 s}\right)}=\underbrace{\frac{\left(1-e^{-s}\right)}{s}}_{F_{2}(s)} \underbrace{\frac{1}{\left(1-e^{-2 s}\right)}}_{\substack{\text { as above, with } \\ \text { period } T=2}}
$$

For $0 \leq t \leq 2$:

$$
\mathcal{L}^{-1}\left\{F_{2}\right\}(t)=\mathcal{L}^{-1}\left\{\frac{1}{s}\right\}(t)-\mathcal{L}^{-1}\left\{\frac{e^{-s}}{s}\right\}(t)=1-u_{1}(t) .
$$

Thus:

$$
f(t)=\mathcal{L}^{-1}\{F\}(t)=
$$

Example:

Compute the inverse Laplace transform of the function $F(s)=\frac{1}{s\left(1+e^{-s}\right)}$

We want to have a denominator of the form $1-e^{-T s}$. For this: $1-e^{-2 s}=\left(1-e^{-s}\right)\left(1+e^{-s}\right)$. Hence:

$$
F(s)=\frac{1}{s\left(1+e^{-s}\right)}=\frac{\left(1-e^{-s}\right)}{s\left(1-e^{-s}\right)\left(1+e^{-s}\right)}=\frac{\left(1-e^{-s}\right)}{s\left(1-e^{-2 s}\right)}=\underbrace{\frac{\left(1-e^{-s}\right)}{s}}_{F_{2}(s)} \underbrace{\frac{1}{\left(1-e^{-2 s}\right)}}_{\begin{array}{c}
\text { as above, with } \\
\text { period } T=2
\end{array}}
$$

For $0 \leq t \leq 2$:

$$
\mathcal{L}^{-1}\left\{F_{2}\right\}(t)=\mathcal{L}^{-1}\left\{\frac{1}{s}\right\}(t)-\mathcal{L}^{-1}\left\{\frac{e^{-s}}{s}\right\}(t)=1-u_{1}(t) .
$$

Thus:

$$
f(t)=\mathcal{L}^{-1}\{F\}(t)=\left\{\begin{array}{ll}
1 & \text { if } 0 \leq t<1 \\
0 & \text { if } 1 \leq t<2
\end{array} \text { extended to } \mathbb{R}\right. \text { by 2-periodicity }
$$

