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Main Topics:
Examples of differential equations with constant coefficients
ay” + by +cy =f(t)

in which the nonhomogenous term f (=the forcing function in a spring-mass system) is
not continuous.
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General fact: even if f is not continuous but piecewise continuous, then the solution
y and also y’ are still continuous (while y” has, as f, jump discontinuities).

This fact suitably extends to constant coefficient DE’s of order > 2 as well.
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Example 2:
Find the solution of the IVP:
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This could be a model of the motion of a dumped oscillator subject an external force uyo.
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i.e.,, with Y = L{y},
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The external force 1 is positive, so the motion will start in the positive direction at
t = 1. Then it oscillates (with damping) around 1/2.
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For t < 2: we have u»(t) = 0 and the IVP becomes

2y +y +2y=0, y(2)=x y'(2) =,

where * and *x can be computed from the solution on [1, 2],
e.g. y(2) = limea us (t)h(t —1).
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For t < 2: we have u»(t) = 0 and the IVP becomes

2y +y +2y=0, y(2)=x y'(2) =,

where * and *x can be computed from the solution on [1, 2],
e.g. y(2) = limea us (t)h(t —1).

There is dumping and no external force : the motion keeps oscillating and tend to dye
out for t — +oo.



