Section 5.6: Differential equations with discontinuous forcing functions

Main Topics:

Examples of differential equations with constant coefficients

$$
a y^{\prime \prime}+b y^{\prime}+c y=f(t)
$$

in which the nonhomogenous term f (=the forcing function in a spring-mass system) is not continuous.

Section 5.6: Differential equations with discontinuous forcing functions

Main Topics:

Examples of differential equations with constant coefficients

$$
a y^{\prime \prime}+b y^{\prime}+c y=f(t)
$$

in which the nonhomogenous term f (=the forcing function in a spring-mass system) is not continuous.

General fact: even if f is not continuous but piecewise continuous, then the solution y and also y^{\prime} are still continuous (while $y^{\prime \prime}$ has, as f, jump discontinuities).

This fact suitably extends to constant coefficient DE's of order >2 as well.

Example 1:

Solve the initial value problem: $y^{\prime \prime}(t)=u_{c}(t)$ with initial condition $y(0)=0, y^{\prime}(0)=0$, where $c>0$.

Example 1:

Solve the initial value problem: $y^{\prime \prime}(t)=u_{c}(t)$ with initial condition $y(0)=0, y^{\prime}(0)=0$, where $c>0$.

Integrate both sides of the DE on $[0, t]$:

$$
y^{\prime}(t)-y^{\prime}(0)=\int_{0}^{t} y^{\prime \prime}(\tau) d \tau=\int_{0}^{t} u_{c}(\tau) d \tau=\left\{\begin{array}{ll}
0 & \text { if } 0 \leq t<c \\
\int_{c}^{t} d \tau=t-c & \text { if } t \geq c
\end{array},\right.
$$

Example 1:

Solve the initial value problem: $y^{\prime \prime}(t)=u_{c}(t)$ with initial condition $y(0)=0, y^{\prime}(0)=0$, where $c>0$.

Integrate both sides of the DE on $[0, t]$:

$$
y^{\prime}(t)-y^{\prime}(0)=\int_{0}^{t} y^{\prime \prime}(\tau) d \tau=\int_{0}^{t} u_{c}(\tau) d \tau=\left\{\begin{array}{ll}
0 & \text { if } 0 \leq t<c \\
\int_{c}^{t} d \tau=t-c & \text { if } t \geq c
\end{array},\right.
$$

Since $y^{\prime}(0)=0$, we obtain $y^{\prime}(t)=(t-c) u_{c}(t)$.

Example 1:

Solve the initial value problem: $y^{\prime \prime}(t)=u_{c}(t)$ with initial condition $y(0)=0, y^{\prime}(0)=0$, where $c>0$.

Integrate both sides of the DE on $[0, t]$:

$$
y^{\prime}(t)-y^{\prime}(0)=\int_{0}^{t} y^{\prime \prime}(\tau) d \tau=\int_{0}^{t} u_{c}(\tau) d \tau=\left\{\begin{array}{ll}
0 & \text { if } 0 \leq t<c \\
\int_{c}^{t} d \tau=t-c & \text { if } t \geq c
\end{array},\right.
$$

Since $y^{\prime}(0)=0$, we obtain $y^{\prime}(t)=(t-c) u_{c}(t)$.
Integrate once more on $[0, t]$:

$$
\begin{aligned}
& y(t)-y(0)=\int_{0}^{t} y^{\prime}(\tau) d \tau=\int_{0}^{t}(\tau-c) u_{c}(\tau) d \tau \\
& =\left\{\begin{array}{ll}
0 & \text { if } 0 \leq t<c \\
\int_{c}^{t}(\tau-c) d \tau=\left[\frac{1}{2} \tau^{2}-c \tau\right]_{\tau=c}^{\tau=t}=\frac{1}{2}(t-c)^{2} & \text { if } t \geq c
\end{array} .\right.
\end{aligned}
$$

Since $y(0)=0$, we conclude $y(t)=\frac{1}{2}(t-c)^{2} u_{c}(t)$.
The graphs of $y, y^{\prime}, y^{\prime \prime}$ show the smoothing effect of integration:

- $y^{\prime \prime}$ is piecewise continuous,
- y^{\prime} is continuous,
- y admits a continous first derivative.

Example 1:

Solve the initial value problem: $y^{\prime \prime}(t)=u_{c}(t)$ with initial condition $y(0)=0, y^{\prime}(0)=0$, where $c>0$.

Integrate both sides of the DE on $[0, t]$:

$$
y^{\prime}(t)-y^{\prime}(0)=\int_{0}^{t} y^{\prime \prime}(\tau) d \tau=\int_{0}^{t} u_{c}(\tau) d \tau=\left\{\begin{array}{ll}
0 & \text { if } 0 \leq t<c \\
\int_{c}^{t} d \tau=t-c & \text { if } t \geq c
\end{array},\right.
$$

Since $y^{\prime}(0)=0$, we obtain $y^{\prime}(t)=(t-c) u_{c}(t)$.
Integrate once more on $[0, t]$:

$$
\begin{aligned}
& y(t)-y(0)=\int_{0}^{t} y^{\prime}(\tau) d \tau=\int_{0}^{t}(\tau-c) u_{c}(\tau) d \tau \\
& =\left\{\begin{array}{ll}
0 & \text { if } 0 \leq t<c \\
\int_{c}^{t}(\tau-c) d \tau=\left[\frac{1}{2} \tau^{2}-c \tau\right]_{\tau=c}^{\tau=t}=\frac{1}{2}(t-c)^{2} & \text { if } t \geq c
\end{array} .\right.
\end{aligned}
$$

Example 1:

Solve the initial value problem: $y^{\prime \prime}(t)=u_{c}(t)$ with initial condition $y(0)=0, y^{\prime}(0)=0$, where $c>0$.

Integrate both sides of the DE on $[0, t]$:

$$
y^{\prime}(t)-y^{\prime}(0)=\int_{0}^{t} y^{\prime \prime}(\tau) d \tau=\int_{0}^{t} u_{c}(\tau) d \tau=\left\{\begin{array}{ll}
0 & \text { if } 0 \leq t<c \\
\int_{c}^{t} d \tau=t-c & \text { if } t \geq c
\end{array},\right.
$$

Since $y^{\prime}(0)=0$, we obtain $y^{\prime}(t)=(t-c) u_{c}(t)$.
Integrate once more on $[0, t]$:

$$
\begin{aligned}
& y(t)-y(0)=\int_{0}^{t} y^{\prime}(\tau) d \tau=\int_{0}^{t}(\tau-c) u_{c}(\tau) d \tau \\
& =\left\{\begin{array}{ll}
0 & \text { if } 0 \leq t<c \\
\int_{c}^{t}(\tau-c) d \tau=\left[\frac{1}{2} \tau^{2}-c \tau\right]_{\tau=c}^{\tau=t}=\frac{1}{2}(t-c)^{2} & \text { if } t \geq c
\end{array} .\right.
\end{aligned}
$$

Since $y(0)=0$, we conclude $y(t)=\frac{1}{2}(t-c)^{2} u_{c}(t)$.

Example 1:

Solve the initial value problem: $y^{\prime \prime}(t)=u_{c}(t)$ with initial condition $y(0)=0, y^{\prime}(0)=0$, where $c>0$.

Integrate both sides of the DE on $[0, t]$:

$$
y^{\prime}(t)-y^{\prime}(0)=\int_{0}^{t} y^{\prime \prime}(\tau) d \tau=\int_{0}^{t} u_{c}(\tau) d \tau=\left\{\begin{array}{ll}
0 & \text { if } 0 \leq t<c \\
\int_{c}^{t} d \tau=t-c & \text { if } t \geq c
\end{array},\right.
$$

Since $y^{\prime}(0)=0$, we obtain $y^{\prime}(t)=(t-c) u_{c}(t)$.
Integrate once more on $[0, t]$:

$$
\begin{aligned}
& y(t)-y(0)=\int_{0}^{t} y^{\prime}(\tau) d \tau=\int_{0}^{t}(\tau-c) u_{c}(\tau) d \tau \\
& =\left\{\begin{array}{ll}
0 & \text { if } 0 \leq t<c \\
\int_{c}^{t}(\tau-c) d \tau=\left[\frac{1}{2} \tau^{2}-c \tau\right]_{\tau=c}^{\tau=t}=\frac{1}{2}(t-c)^{2} & \text { if } t \geq c
\end{array} .\right.
\end{aligned}
$$

Since $y(0)=0$, we conclude $y(t)=\frac{1}{2}(t-c)^{2} u_{c}(t)$.
The graphs of $y, y^{\prime}, y^{\prime \prime}$ show the smoothing effect of integration:

- $y^{\prime \prime}$ is piecewise continuous,
- y^{\prime} is continuous,
- y admits a continous first derivative.

Example 2:

Find the solution of the IVP:

$$
2 y^{\prime \prime}+y^{\prime}+2 y=u_{12}=u_{1}-u_{2}, \quad y(0)=y^{\prime}(0)=0
$$

This could be a model of the motion of a dumped oscillator subject an external force u_{12}.
Apply the Laplace transform method: $2 \mathcal{L}\left\{y^{\prime \prime}\right\}+\mathcal{L}\left\{y^{\prime}\right\}+2 \mathcal{L}\{y\}=\mathcal{L}\left\{u_{1}\right\}-\mathcal{L}\left\{u_{2}\right\}$, i.e., with $Y=\mathcal{L}\{y\}$,

$$
2\left[s^{2} Y(s)-s y(0)-y^{\prime}(0)\right]+s Y(s)-y(0)+2 Y(s)=\frac{e^{-s}-e^{-2 s}}{s}
$$

Example 2:

Find the solution of the IVP:

$$
2 y^{\prime \prime}+y^{\prime}+2 y=u_{12}=u_{1}-u_{2}, \quad y(0)=y^{\prime}(0)=0
$$

This could be a model of the motion of a dumped oscillator subject an external force u_{12}.
Apply the Laplace transform method: $2 \mathcal{L}\left\{y^{\prime \prime}\right\}+\mathcal{L}\left\{y^{\prime}\right\}+2 \mathcal{L}\{y\}=\mathcal{L}\left\{u_{1}\right\}-\mathcal{L}\left\{u_{2}\right\}$, i.e., with $Y=\mathcal{L}\{y\}$,

$$
2\left[s^{2} Y(s)-s y(0)-y^{\prime}(0)\right]+s Y(s)-y(0)+2 Y(s)=\frac{e^{-s}-e^{-2 s}}{s}
$$

Inserting the initial conditions:

$$
\left(2 s^{2}+s+2\right) Y(s)=\frac{e^{-s}-e^{-2 s}}{s}, \quad \text { i.e. } \quad Y(s)=\frac{e^{-s}-e^{-2 s}}{s\left(2 s^{2}+s+2\right)}
$$

Example 2:

Find the solution of the IVP:

$$
2 y^{\prime \prime}+y^{\prime}+2 y=u_{12}=u_{1}-u_{2}, \quad y(0)=y^{\prime}(0)=0
$$

This could be a model of the motion of a dumped oscillator subject an external force u_{12}.
Apply the Laplace transform method: $2 \mathcal{L}\left\{y^{\prime \prime}\right\}+\mathcal{L}\left\{y^{\prime}\right\}+2 \mathcal{L}\{y\}=\mathcal{L}\left\{u_{1}\right\}-\mathcal{L}\left\{u_{2}\right\}$, i.e., with $Y=\mathcal{L}\{y\}$,

$$
2\left[s^{2} Y(s)-s y(0)-y^{\prime}(0)\right]+s Y(s)-y(0)+2 Y(s)=\frac{e^{-s}-e^{-2 s}}{s}
$$

Inserting the initial conditions:

$$
\left(2 s^{2}+s+2\right) Y(s)=\frac{e^{-s}-e^{-2 s}}{s}, \quad \text { i.e. } \quad Y(s)=\frac{e^{-s}-e^{-2 s}}{s\left(2 s^{2}+s+2\right)}
$$

To determine $y=\mathcal{L}^{-1}\{Y\}$, it is convenient to write

$$
Y(s)=e^{-s} H(s)-e^{-2 s} H(s) \quad \text { where } \quad H(s)=\frac{1}{s\left(2 s^{2}+s+2\right)} .
$$

Example 2:

Find the solution of the IVP:

$$
2 y^{\prime \prime}+y^{\prime}+2 y=u_{12}=u_{1}-u_{2}, \quad y(0)=y^{\prime}(0)=0
$$

This could be a model of the motion of a dumped oscillator subject an external force u_{12}.
Apply the Laplace transform method: $2 \mathcal{L}\left\{y^{\prime \prime}\right\}+\mathcal{L}\left\{y^{\prime}\right\}+2 \mathcal{L}\{y\}=\mathcal{L}\left\{u_{1}\right\}-\mathcal{L}\left\{u_{2}\right\}$, i.e., with $Y=\mathcal{L}\{y\}$,

$$
2\left[s^{2} Y(s)-s y(0)-y^{\prime}(0)\right]+s Y(s)-y(0)+2 Y(s)=\frac{e^{-s}-e^{-2 s}}{s}
$$

Inserting the initial conditions:

$$
\left(2 s^{2}+s+2\right) Y(s)=\frac{e^{-s}-e^{-2 s}}{s}, \quad \text { i.e. } Y(s)=\frac{e^{-s}-e^{-2 s}}{s\left(2 s^{2}+s+2\right)}
$$

To determine $y=\mathcal{L}^{-1}\{Y\}$, it is convenient to write

$$
Y(s)=e^{-s} H(s)-e^{-2 s} H(s) \quad \text { where } \quad H(s)=\frac{1}{s\left(2 s^{2}+s+2\right)}
$$

Set $h=\mathcal{L}^{-1}\{H\}$. Recall that $\quad H(s)$

$$
\mathcal{L}\left\{u_{c}(t) h(t-c)\right\}=e^{-c s} \overbrace{\mathcal{L}\{h\}(s)} \quad \text { i.e. } \quad u_{c}(t) h(t-c)=\mathcal{L}^{-1}\left\{e^{-c s} H(s)\right\} .
$$

Example 2:

Find the solution of the IVP:

$$
2 y^{\prime \prime}+y^{\prime}+2 y=u_{12}=u_{1}-u_{2}, \quad y(0)=y^{\prime}(0)=0
$$

This could be a model of the motion of a dumped oscillator subject an external force u_{12}.
Apply the Laplace transform method: $2 \mathcal{L}\left\{y^{\prime \prime}\right\}+\mathcal{L}\left\{y^{\prime}\right\}+2 \mathcal{L}\{y\}=\mathcal{L}\left\{u_{1}\right\}-\mathcal{L}\left\{u_{2}\right\}$, i.e., with $Y=\mathcal{L}\{y\}$,

$$
2\left[s^{2} Y(s)-s y(0)-y^{\prime}(0)\right]+s Y(s)-y(0)+2 Y(s)=\frac{e^{-s}-e^{-2 s}}{s}
$$

Inserting the initial conditions:

$$
\left(2 s^{2}+s+2\right) Y(s)=\frac{e^{-s}-e^{-2 s}}{s}, \quad \text { i.e. } \quad Y(s)=\frac{e^{-s}-e^{-2 s}}{s\left(2 s^{2}+s+2\right)}
$$

To determine $y=\mathcal{L}^{-1}\{Y\}$, it is convenient to write

$$
Y(s)=e^{-s} H(s)-e^{-2 s} H(s) \quad \text { where } \quad H(s)=\frac{1}{s\left(2 s^{2}+s+2\right)} .
$$

Set $h=\mathcal{L}^{-1}\{H\}$. Recall that $\quad H(s)$

$$
\mathcal{L}\left\{u_{c}(t) h(t-c)\right\}=e^{-c s} \overbrace{\mathcal{L}\{h\}(s)} \quad \text { i.e. } \quad u_{c}(t) h(t-c)=\mathcal{L}^{-1}\left\{e^{-c s} H(s)\right\} .
$$

Thus

$$
y(t)=\mathcal{L}^{-1}\{Y\}(t)=\mathcal{L}^{-1}\left\{e^{-s} H(s)\right\}-\mathcal{L}^{-1}\left\{e^{-2 s} H(s)\right\}=u_{1}(t) h(t-1)-u_{2}(t) h(t-2)
$$

Example 2:

Find the solution of the IVP:

$$
2 y^{\prime \prime}+y^{\prime}+2 y=u_{12}=u_{1}-u_{2}, \quad y(0)=y^{\prime}(0)=0
$$

This could be a model of the motion of a dumped oscillator subject an external force u_{12}.
Apply the Laplace transform method: $2 \mathcal{L}\left\{y^{\prime \prime}\right\}+\mathcal{L}\left\{y^{\prime}\right\}+2 \mathcal{L}\{y\}=\mathcal{L}\left\{u_{1}\right\}-\mathcal{L}\left\{u_{2}\right\}$, i.e., with $Y=\mathcal{L}\{y\}$,

$$
2\left[s^{2} Y(s)-s y(0)-y^{\prime}(0)\right]+s Y(s)-y(0)+2 Y(s)=\frac{e^{-s}-e^{-2 s}}{s}
$$

Inserting the initial conditions:

$$
\left(2 s^{2}+s+2\right) Y(s)=\frac{e^{-s}-e^{-2 s}}{s}, \quad \text { i.e. } \quad Y(s)=\frac{e^{-s}-e^{-2 s}}{s\left(2 s^{2}+s+2\right)}
$$

To determine $y=\mathcal{L}^{-1}\{Y\}$, it is convenient to write

$$
Y(s)=e^{-s} H(s)-e^{-2 s} H(s) \quad \text { where } \quad H(s)=\frac{1}{s\left(2 s^{2}+s+2\right)}
$$

Set $h=\mathcal{L}^{-1}\{H\}$. Recall that $\quad H(s)$

$$
\mathcal{L}\left\{u_{c}(t) h(t-c)\right\}=e^{-c s} \overbrace{\mathcal{L}\{h\}(s)} \quad \text { i.e. } \quad u_{c}(t) h(t-c)=\mathcal{L}^{-1}\left\{e^{-c s} H(s)\right\} .
$$

Thus

$$
y(t)=\mathcal{L}^{-1}\{Y\}(t)=\mathcal{L}^{-1}\left\{e^{-s} H(s)\right\}-\mathcal{L}^{-1}\left\{e^{-2 s} H(s)\right\}=u_{1}(t) h(t-1)-u_{2}(t) h(t-2)
$$

It remains to find h.

$$
H(s)=\frac{1}{s\left(2 s^{2}+s+2\right)}
$$

$$
\begin{aligned}
H(s) & =\frac{1}{s\left(2 s^{2}+s+2\right)} \\
& =\frac{1}{2} \frac{1}{s}-\frac{1}{2} \frac{s+\frac{1}{2}}{s^{2}+\frac{s}{2}+1} \quad \text { [by partial fraction decomposition] }
\end{aligned}
$$

$$
\begin{aligned}
H(s) & =\frac{1}{s\left(2 s^{2}+s+2\right)} \\
& =\frac{1}{2} \frac{1}{s}-\frac{1}{2} \frac{s+\frac{1}{2}}{s^{2}+\frac{s}{2}+1} \quad \text { [by partial fraction decomposition] } \\
& =\frac{1}{2} \frac{1}{s}-\frac{1}{2} \frac{s+\frac{1}{2}}{\left(s+\frac{1}{4}\right)^{2}+\frac{15}{16}} \quad \text { [by completing the square] }
\end{aligned}
$$

$$
\begin{aligned}
H(s) & =\frac{1}{s\left(2 s^{2}+s+2\right)} \\
& =\frac{1}{2} \frac{1}{s}-\frac{1}{2} \frac{s+\frac{1}{2}}{s^{2}+\frac{s}{2}+1} \quad \text { [by partial fraction decomposition] } \\
& =\frac{1}{2} \frac{1}{s}-\frac{1}{2} \frac{s+\frac{1}{2}}{\left(s+\frac{1}{4}\right)^{2}+\frac{15}{16}} \quad \text { [by completing the square] } \\
& =\frac{1}{2} \frac{1}{s}-\frac{1}{2} \frac{\left(s+\frac{1}{4}\right)+\frac{1}{4}}{\left(s+\frac{1}{4}\right)^{2}+\frac{15}{16}}
\end{aligned}
$$

$$
\begin{aligned}
H(s) & =\frac{1}{s\left(2 s^{2}+s+2\right)} \\
& =\frac{1}{2} \frac{1}{s}-\frac{1}{2} \frac{s+\frac{1}{2}}{s^{2}+\frac{s}{2}+1} \quad \text { [by partial fraction decomposition] } \\
& =\frac{1}{2} \frac{1}{s}-\frac{1}{2} \frac{s+\frac{1}{2}}{\left(s+\frac{1}{4}\right)^{2}+\frac{15}{16}} \quad \text { [by completing the square] } \\
& =\frac{1}{2} \frac{1}{s}-\frac{1}{2} \frac{\left(s+\frac{1}{4}\right)+\frac{1}{4}}{\left(s+\frac{1}{4}\right)^{2}+\frac{15}{16}} \\
& =\frac{1}{2} \frac{1}{s}-\frac{1}{2}\left[\left.\frac{s}{s^{2}+\frac{15}{16}}\right|_{s \rightarrow s+\frac{1}{4}}+\left.\frac{1}{4} \frac{4}{\sqrt{15}} \frac{\frac{\sqrt{15}}{4}}{s^{2}+\frac{15}{16}}\right|_{s \rightarrow s+\frac{1}{4}}\right]
\end{aligned}
$$

$$
\begin{aligned}
H(s) & =\frac{1}{s\left(2 s^{2}+s+2\right)} \\
& =\frac{1}{2} \frac{1}{s}-\frac{1}{2} \frac{s+\frac{1}{2}}{s^{2}+\frac{s}{2}+1} \quad \text { [by partial fraction decomposition] } \\
& =\frac{1}{2} \frac{1}{s}-\frac{1}{2} \frac{s+\frac{1}{2}}{\left(s+\frac{1}{4}\right)^{2}+\frac{15}{16}} \quad \text { [by completing the square] } \\
& =\frac{1}{2} \frac{1}{s}-\frac{1}{2} \frac{\left(s+\frac{1}{4}\right)+\frac{1}{4}}{\left(s+\frac{1}{4}\right)^{2}+\frac{15}{16}} \\
& =\frac{1}{2} \frac{1}{s}-\frac{1}{2}\left[\left.\frac{s}{s^{2}+\frac{15}{16}}\right|_{s \rightarrow s+\frac{1}{4}}+\left.\frac{1}{4} \frac{4}{\sqrt{15}} \frac{\frac{\sqrt{15}}{4}}{s^{2}+\frac{15}{16}}\right|_{s \rightarrow s+\frac{1}{4}}\right]
\end{aligned}
$$

Thus, by the table of Laplace transforms,

$$
h(t)=\mathcal{L}^{-1}\{H(s)\}=\frac{1}{2}-\frac{1}{2}\left[e^{-t / 4} \cos \left(\frac{\sqrt{15}}{4} t\right)+e^{-t / 4} \frac{\sqrt{15}}{15} \sin \left(\frac{\sqrt{15}}{4} t\right)\right]
$$

$$
\begin{aligned}
H(s) & =\frac{1}{s\left(2 s^{2}+s+2\right)} \\
& =\frac{1}{2} \frac{1}{s}-\frac{1}{2} \frac{s+\frac{1}{2}}{s^{2}+\frac{s}{2}+1} \quad \text { [by partial fraction decomposition] } \\
& =\frac{1}{2} \frac{1}{s}-\frac{1}{2} \frac{s+\frac{1}{2}}{\left(s+\frac{1}{4}\right)^{2}+\frac{15}{16}} \quad \text { [by completing the square] } \\
& =\frac{1}{2} \frac{1}{s}-\frac{1}{2} \frac{\left(s+\frac{1}{4}\right)+\frac{1}{4}}{\left(s+\frac{1}{4}\right)^{2}+\frac{15}{16}} \\
& =\frac{1}{2} \frac{1}{s}-\frac{1}{2}\left[\left.\frac{s}{s^{2}+\frac{15}{16}}\right|_{s \rightarrow s+\frac{1}{4}}+\left.\frac{1}{4} \frac{4}{\sqrt{15}} \frac{\frac{\sqrt{15}}{4}}{s^{2}+\frac{15}{16}}\right|_{s \rightarrow s+\frac{1}{4}}\right]
\end{aligned}
$$

Thus, by the table of Laplace transforms,

$$
\begin{aligned}
h(t) & =\mathcal{L}^{-1}\{H(s)\}=\frac{1}{2}-\frac{1}{2}\left[e^{-t / 4} \cos \left(\frac{\sqrt{15}}{4} t\right)+e^{-t / 4} \frac{\sqrt{15}}{15} \sin \left(\frac{\sqrt{15}}{4} t\right)\right] \\
& =\mathcal{L}^{-1}\{H(s)\}=\frac{1}{2}-\frac{1}{2} e^{-t / 4}\left[\cos \left(\frac{\sqrt{15}}{4} t\right)+\frac{\sqrt{15}}{15} \sin \left(\frac{\sqrt{15}}{4} t\right)\right]
\end{aligned}
$$

Conclusion: $y(t)=u_{1}(t) h(t-1)-u_{2}(t) h(t-2)$ where

$$
h(t)=\frac{1}{2}-\frac{1}{2} e^{-t / 4}\left[\cos \left(\frac{\sqrt{15}}{4} t\right)+\frac{\sqrt{15}}{15} \sin \left(\frac{\sqrt{15}}{4} t\right)\right]
$$

Conclusion: $y(t)=u_{1}(t) h(t-1)-u_{2}(t) h(t-2)$ where

$$
h(t)=\frac{1}{2}-\frac{1}{2} e^{-t / 4}\left[\cos \left(\frac{\sqrt{15}}{4} t\right)+\frac{\sqrt{15}}{15} \sin \left(\frac{\sqrt{15}}{4} t\right)\right]
$$

Plot of the solution:

For $0 \leq t \leq 1$: we have $u_{12}(t)=0$ and the IVP becomes
$2 y^{\prime \prime}+y^{\prime}+2 y=0, \quad y(0)=y^{\prime}(0)=0$.
The unique solution is $y=0$.

Conclusion: $y(t)=u_{1}(t) h(t-1)-u_{2}(t) h(t-2)$ where

$$
h(t)=\frac{1}{2}-\frac{1}{2} e^{-t / 4}\left[\cos \left(\frac{\sqrt{15}}{4} t\right)+\frac{\sqrt{15}}{15} \sin \left(\frac{\sqrt{15}}{4} t\right)\right]
$$

Plot of the solution:

For $0 \leq t \leq 1$: we have $u_{12}(t)=0$ and the IVP becomes
$2 y^{\prime \prime}+y^{\prime}+2 y=0, \quad y(0)=y^{\prime}(0)=0$.
The unique solution is $y=0$.

For $1 \leq t \leq 2$: we have $u_{12}(t)=1$ and the IVP becomes

$$
2 y^{\prime \prime}+y^{\prime}+2 y=1, \quad y(1)=y^{\prime}(1)=0
$$

Conclusion: $y(t)=u_{1}(t) h(t-1)-u_{2}(t) h(t-2)$ where

$$
h(t)=\frac{1}{2}-\frac{1}{2} e^{-t / 4}\left[\cos \left(\frac{\sqrt{15}}{4} t\right)+\frac{\sqrt{15}}{15} \sin \left(\frac{\sqrt{15}}{4} t\right)\right]
$$

Plot of the solution:

For $0 \leq t \leq 1$: we have $u_{12}(t)=0$ and the IVP becomes
$2 y^{\prime \prime}+y^{\prime}+2 y=0, \quad y(0)=y^{\prime}(0)=0$.
The unique solution is $y=0$.

For $1 \leq t \leq 2$: we have $u_{12}(t)=1$ and the IVP becomes

$$
2 y^{\prime \prime}+y^{\prime}+2 y=1, \quad y(1)=y^{\prime}(1)=0 .
$$

$h(t)$ is the solution of the IVP: $2 y^{\prime \prime}+y^{\prime}+2 y=1, \quad y(0)=y^{\prime}(0)=0$.

Conclusion: $y(t)=u_{1}(t) h(t-1)-u_{2}(t) h(t-2)$ where

$$
h(t)=\frac{1}{2}-\frac{1}{2} e^{-t / 4}\left[\cos \left(\frac{\sqrt{15}}{4} t\right)+\frac{\sqrt{15}}{15} \sin \left(\frac{\sqrt{15}}{4} t\right)\right]
$$

Plot of the solution:

For $0 \leq t \leq 1$: we have $u_{12}(t)=0$ and the IVP becomes
$2 y^{\prime \prime}+y^{\prime}+2 y=0, \quad y(0)=y^{\prime}(0)=0$.
The unique solution is $y=0$.

For $1 \leq t \leq 2$: we have $u_{12}(t)=1$ and the IVP becomes

$$
2 y^{\prime \prime}+y^{\prime}+2 y=1, \quad y(1)=y^{\prime}(1)=0 .
$$

$h(t)$ is the solution of the IVP: $2 y^{\prime \prime}+y^{\prime}+2 y=1, \quad y(0)=y^{\prime}(0)=0$. Shifting the initial conditions at $t=1$ corresponds to shifting the solution to $y(t)=u_{1}(t) h(t-1)$ on $[1,2]$.

Conclusion: $y(t)=u_{1}(t) h(t-1)-u_{2}(t) h(t-2)$ where

$$
h(t)=\frac{1}{2}-\frac{1}{2} e^{-t / 4}\left[\cos \left(\frac{\sqrt{15}}{4} t\right)+\frac{\sqrt{15}}{15} \sin \left(\frac{\sqrt{15}}{4} t\right)\right]
$$

Plot of the solution:

For $0 \leq t \leq 1$: we have $u_{12}(t)=0$ and the IVP becomes
$2 y^{\prime \prime}+y^{\prime}+2 y=0, \quad y(0)=y^{\prime}(0)=0$.
The unique solution is $y=0$.

For $1 \leq t \leq 2$: we have $u_{12}(t)=1$ and the IVP becomes

$$
2 y^{\prime \prime}+y^{\prime}+2 y=1, \quad y(1)=y^{\prime}(1)=0 .
$$

$h(t)$ is the solution of the IVP: $2 y^{\prime \prime}+y^{\prime}+2 y=1, \quad y(0)=y^{\prime}(0)=0$. Shifting the initial conditions at $t=1$ corresponds to shifting the solution to $y(t)=u_{1}(t) h(t-1)$ on $[1,2]$.
The external force 1 is positive, so the motion will start in the positive direction at $t=1$. Then it oscillates (with damping) around $1 / 2$.

Plot of the solution:

For $t \leq 2$: we have $u_{12}(t)=0$ and the IVP becomes

$$
2 y^{\prime \prime}+y^{\prime}+2 y=0, \quad y(2)=*, y^{\prime}(2)=* *,
$$

where $*$ and $* *$ can be computed from the solution on [1, 2], e.g. $y(2)=\lim _{t \rightarrow 2} u_{1}(t) h(t-1)$.

Plot of the solution:

For $t \leq 2$: we have $u_{12}(t)=0$ and the IVP becomes

$$
2 y^{\prime \prime}+y^{\prime}+2 y=0, \quad y(2)=*, y^{\prime}(2)=* *,
$$

where $*$ and $* *$ can be computed from the solution on $[1,2]$, e.g. $y(2)=\lim _{t \rightarrow 2} u_{1}(t) h(t-1)$.

There is dumping and no external force : the motion keeps oscillating and tend to dye out for $t \rightarrow+\infty$.

