Section 6.2: Basic theory of systems of n first order linear equations

$$
\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}+\mathbf{g}(t)
$$

where

$$
\mathbf{x}(t)=\left(\begin{array}{c}
x_{1}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right), \quad \mathbf{P}(t)=\left(\begin{array}{ccc}
p_{11}(t) & \cdots & p_{1 n}(t) \\
\vdots & \ddots & \vdots \\
p_{n 1}(t) & \cdots & p_{n n}(t)
\end{array}\right), \quad \mathbf{g}(t)=\left(\begin{array}{c}
g_{1}(t) \\
\vdots \\
g_{n}(t)
\end{array}\right)
$$

Main topics:

- Existence and unicity of solutions
- Principle of superposition (homogenous systems, i.e. $\mathbf{g}(t)=\mathbf{0}$)
- Independence of solutions and the Wronskian (homogeneous systems)
- General solutions (homogeneous systems)

Two generalizations with respect to Section 3.3:

- n linear DE
- $\mathbf{P}(t)$ not necessarily constant in t.

Existence and unicity of solutions

Consider the system of n linear first-order DEs: $\quad \mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}+\mathbf{g}(t) \quad$ where

$$
\mathbf{x}(t)=\left(\begin{array}{c}
x_{1}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right), \quad \mathbf{P}(t)=\left(\begin{array}{ccc}
p_{11}(t) & \cdots & p_{1 n}(t) \\
\vdots & \ddots & \vdots \\
p_{n 1}(t) & \cdots & p_{n n}(t)
\end{array}\right), \quad \mathbf{g}(t)=\left(\begin{array}{c}
g_{1}(t) \\
\vdots \\
g_{n}(t)
\end{array}\right),
$$

Remarks:

- These are matrix-valued functions, or simply matrix functions, i.e. matrices or vectors whose entries are functions of t.
- A matrix function is continuous on the interval $/$ if all its entries are continuous functions of t.

Existence and unicity of solutions

Consider the system of n linear first-order DEs: $\quad \mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}+\mathbf{g}(t) \quad$ where

$$
\mathbf{x}(t)=\left(\begin{array}{c}
x_{1}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right), \quad \mathbf{P}(t)=\left(\begin{array}{ccc}
p_{11}(t) & \cdots & p_{1 n}(t) \\
\vdots & \ddots & \vdots \\
p_{n 1}(t) & \cdots & p_{n n}(t)
\end{array}\right), \mathbf{g}(t)=\left(\begin{array}{c}
g_{1}(t) \\
\vdots \\
g_{n}(t)
\end{array}\right),
$$

Remarks:

- These are matrix-valued functions, or simply matrix functions, i.e. matrices or vectors whose entries are functions of t.
- A matrix function is continuous on the interval $/$ if all its entries are continuous functions of t.

Example:

$\mathbf{P}(t)=\left(\begin{array}{cc}1 /(t-1) & e^{t} \\ t^{2} & \ln t\end{array}\right)$ is a continuous matrix function on

Existence and unicity of solutions

Consider the system of n linear first-order DEs: $\quad \mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}+\mathbf{g}(t) \quad$ where

$$
\mathbf{x}(t)=\left(\begin{array}{c}
x_{1}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right), \quad \mathbf{P}(t)=\left(\begin{array}{ccc}
p_{11}(t) & \cdots & p_{1 n}(t) \\
\vdots & \ddots & \vdots \\
p_{n 1}(t) & \cdots & p_{n n}(t)
\end{array}\right), \quad \mathbf{g}(t)=\left(\begin{array}{c}
g_{1}(t) \\
\vdots \\
g_{n}(t)
\end{array}\right),
$$

Remarks:

- These are matrix-valued functions, or simply matrix functions, i.e. matrices or vectors whose entries are functions of t.
- A matrix function is continuous on the interval $/$ if all its entries are continuous functions of t.

Example:

$\mathbf{P}(t)=\left(\begin{array}{cc}1 /(t-1) & e^{t} \\ t^{2} & \ln t\end{array}\right)$ is a continuous matrix function on $I=(0,1)$ or on $I=(1,+\infty)$.

Theorem (Theorem 6.2.1)

If $\mathbf{P}(t)$ and $\mathbf{g}(t)$ are continuous matrix functions on a open interval I and $t_{0} \in I$, then the IVP: $\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}+\mathbf{g}(t)$ with initial condition $\mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0}$ has a unique solution $\mathbf{x}=\mathbf{x}(t)$ with t in I.

The principle of superposition (for homogenous linear systems)

Definition

We say that \mathbf{x} is a linear combination of $\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathbf{k}}$, written

$$
\mathbf{x}=c_{1} \mathbf{x}_{1}+\cdots+c_{k} \mathbf{x}_{\mathbf{k}},
$$

if there are constants c_{1}, \ldots, c_{k} such that $\mathbf{x}(t)=c_{1} \mathbf{x}_{\mathbf{1}}(t)+\cdots+c_{k} \mathbf{x}_{\mathbf{k}}(t)$ for all t.

Theorem (Theorem 6.2.2, Principle of superposition)
If $\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{k}$ are k solutions of the homogeneous linear system

$$
\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}
$$

on an open interval I, then any linear combination $c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}+\cdots+c_{k} \mathbf{x}_{k}$, where the c_{j} 's are constants, is a solution of the system in 1 .

The Wronskian

Let $/$ be an open interval. For $t \in I$ consider

$$
\mathbf{x}_{\mathbf{1}}(t)=\left(\begin{array}{c}
x_{11}(t) \\
\vdots \\
x_{n 1}(t)
\end{array}\right), \ldots, \mathbf{x}_{\mathbf{n}}(t)=\left(\begin{array}{c}
x_{1 n}(t) \\
\vdots \\
x_{n n}(t)
\end{array}\right)
$$

Let

$$
\mathbf{X}(t)=\left[\mathbf{x}_{\mathbf{1}}(t), \ldots, \mathbf{x}_{\mathbf{n}}(t)\right]=\left(\begin{array}{cccc}
x_{11}(t) & x_{12}(t) & \cdots & x_{1 n}(t) \\
x_{21}(t) & x_{22}(t) & \cdots & x_{2 n}(t) \\
\vdots & \vdots & \ddots & \vdots \\
x_{n 1}(t) & x_{n 2}(t) & \cdots & x_{n n}(t)
\end{array}\right)
$$

be the $n \times n$ matrix-valued function on $/$ having $\mathbf{x}_{\mathbf{1}}(t), \ldots, \mathbf{x}_{\mathbf{n}}(t)$ as column vectors.

Definition

The Wronskian of $\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathbf{n}}$ is the function

$$
W\left[\mathbf{x}_{1}, \ldots \mathbf{x}_{\mathbf{n}}\right]: t \mapsto W\left[\mathbf{x}_{1}, \ldots \mathbf{x}_{\mathbf{n}}\right](t)=\operatorname{det}(\mathbf{X}(t))
$$

defined for $t \in I$.

Definition

The vector-valued functions $\mathbf{x}_{1}=\left(\begin{array}{c}x_{11} \\ \vdots \\ x_{n 1}\end{array}\right), \ldots, \mathbf{x}_{\mathbf{n}}=\left(\begin{array}{c}x_{1 n} \\ \vdots \\ x_{n n}\end{array}\right)$ defined on the interval I are said linearly dependent on I if there are constants c_{1}, \ldots, c_{n} (not all zero and independent of $t \in I$) such that

$$
c_{1} \mathbf{x}_{1}(t)+\cdots+c_{n} \mathbf{x}_{\mathbf{n}}(t)=0 \text { for all } t \in I
$$

If $\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathbf{n}}$ are not linearly dependent, we say they are linearly independent. This means that $c_{1}=\cdots=c_{n}=0$ are the only constants such that

$$
c_{1} \mathbf{x}_{1}(t)+\cdots+c_{n} \mathbf{x}_{\mathbf{n}}(t)=0 \text { for all } t \in I
$$

Example: $\quad \mathbf{x}_{1}=\left(\begin{array}{c}1+t \\ t \\ 1-t\end{array}\right), \mathbf{x}_{2}=\left(\begin{array}{c}3 \\ t+2 \\ t\end{array}\right), \mathbf{x}_{3}=\left(\begin{array}{c}1-2 t \\ 2-t \\ 3 t-2\end{array}\right)$ are linearly dependent on the interval $I=(-\infty, \infty)$. Indeed

$$
2\left(\begin{array}{c}
1+t \\
t \\
1-t
\end{array}\right)-\left(\begin{array}{c}
3 \\
t+2 \\
t
\end{array}\right)+\left(\begin{array}{c}
1-2 t \\
2-t \\
3 t-2
\end{array}\right)=\left(\begin{array}{c}
2+2 t-3+1-2 t \\
2 t-t-2+2-t \\
2-2 t-t+3 t-2
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

So the above relation holds for all $t \in(-\infty, \infty)$ when $c_{1}=2, c_{2}=-1$ and $c_{3}=1$.

Fundamental sets of solutions of $\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}$

Let $\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathbf{n}}$ be n solutions of the homogeneous linear system $\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}$ of n linear DE on the open interval l.

Theorem (Theorem 6.2.5)

Suppose that $\mathbf{P}(t)$ is a continuous function of $t \in I$:

- If $\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathrm{n}}$ are linearly independent on I, then $W\left[\mathbf{x}_{1}, \ldots \mathbf{x}_{\mathrm{n}}\right](t) \neq 0$ for all $t \in I$.
- If $\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathrm{n}}$ are linearly dependent on I, then $W\left[\mathbf{x}_{1}, \ldots \mathbf{x}_{\mathrm{n}}\right](t)=0$ for all $t \in I$.

Consequence: if there is $t_{0} \in I$ such that $W\left[\mathbf{x}_{1}, \ldots \mathbf{x}_{n}\right]\left(t_{0}\right) \neq 0$, then $\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathbf{n}}$ are linearly independent on I.

Definition

Let $\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathbf{n}}$ be a set of n solutions of the homogeneous linear system $\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}$ of n linear DEs.
If $\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathrm{n}}$ are linearly independent on I, then we say that they form a fundamental set of solutions on I.

General solution of $\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}$

Theorem (Theorem 6.2.6)

Let $\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}$ be a homogeneous system of n linear equations, where $\mathbf{P}(t)$ is continuous on the interval l.
Let $\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathbf{n}}$ be a fundamental set of solutions of $\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}$ on I.
Then any solution of the this system on I is of the form

$$
\mathbf{x}=c_{1} \mathbf{x}_{1}+\cdots+c_{n} \mathbf{x}_{\mathbf{n}}
$$

for some constants c_{1}, \ldots, c_{n}. This is the general solution of the system.

General solution of $\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}$

Theorem (Theorem 6.2.6)

Let $\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}$ be a homogeneous system of n linear equations, where $\mathbf{P}(t)$ is continuous on the interval l.
Let $\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathbf{n}}$ be a fundamental set of solutions of $\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}$ on I.
Then any solution of the this system on I is of the form

$$
\mathbf{x}=c_{1} \mathbf{x}_{1}+\cdots+c_{n} \mathbf{x}_{\mathbf{n}}
$$

for some constants c_{1}, \ldots, c_{n}. This is the general solution of the system.
Moreover: an intitial condition $\mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0}$, where $\mathbf{x}_{0}=\left(\begin{array}{c}x_{10} \\ \vdots \\ x_{n 0}\end{array}\right)$ is a constant vector, uniquely determines the constants c_{1}, \cdots, c_{n}. The solution to the IVP is unique.

General solution of $\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}$

Theorem (Theorem 6.2.6)

Let $\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}$ be a homogeneous system of n linear equations, where $\mathbf{P}(t)$ is continuous on the interval l.
Let $\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathbf{n}}$ be a fundamental set of solutions of $\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}$ on I.
Then any solution of the this system on I is of the form

$$
\mathbf{x}=c_{1} \mathbf{x}_{1}+\cdots+c_{n} \mathbf{x}_{\mathbf{n}}
$$

for some constants c_{1}, \ldots, c_{n}. This is the general solution of the system.
Moreover: an intitial condition $\mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0}$, where $\mathbf{x}_{0}=\left(\begin{array}{c}x_{10} \\ \vdots \\ x_{n 0}\end{array}\right)$ is a constant vector, uniquely determines the constants c_{1}, \cdots, c_{n}. The solution to the IVP is unique.

Conclusion:

- The general solution of a homogenous system of n linear first order DEs (with $\mathbf{P}(t)$ continuous) is a linear combination of n linearly independent solutions (same n)
- To find the general solution it is enough to find n linearly independent solutions.
- To check if n solutions $\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathrm{n}}$ are linearly independent, we compute their Wronskian.

Example:

Consider the system $\mathbf{x}^{\prime}=\left(\begin{array}{ccc}2 & -1 & 0 \\ -1 & 0 & 2 \\ -1 & -2 & 4\end{array}\right) \mathbf{x}$ on the interval $I=\mathbb{R}$.
One can verify that the functions $\mathbf{x}_{1}(t)=e^{t}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right), \mathbf{x}_{2}(t)=e^{2 t}\left(\begin{array}{l}2 \\ 0 \\ 1\end{array}\right)$ and
$\mathbf{x}_{3}(t)=e^{3 t}\left(\begin{array}{c}1 \\ -1 \\ -1\end{array}\right)$ are solutions of this system.

- Computing their Wronskian, determine whether $\mathbf{x}_{1}, \mathbf{x}_{2}$ and \mathbf{x}_{3} form a fundamental set of solutions for this system of DE on \mathbb{R}.
- Write down the general solution.
- Determine the unique solution satisfying the initial condition $\mathbf{x}(0)=\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right)$

