
Section 6.3: Homogenous linear systems with constant coeffs.

Consider the system x′ = Ax where A is a n × n matrix with real coefficients.

Theorem (Theorem 6.3.1 – cf. Section 3.3 for n = 2)
Suppose that:

(1) A has real (not necessarily distinct) eigenvalues λ1, · · · , λn,

(2) A has eigenvectors v1, · · · , vn associated with the eigenvalues λ1, · · · , λn,
respectively, so that v1, · · · , vn are linearly independent.

Then the vector functions

x1(t) = eλ1tv1, . . . , xn(t) = eλn tvn

form a fundamental set of solutions of the system x′ = Ax on R = (−∞,+∞).

The general solution of x′ = Ax on R is

x(t) = C1eλ1tv1 + · · ·+ Cneλn tvn

where t ∈ R and C1, . . . ,Cn are constants.

• (2) is satisfied if the eigenvalues λ1, . . . , λn are all distinct (Corollary 6.3.2).
• both (1) and (2) are satisfied if A is symmetric, i.e. A = AT , where AT denotes the
transpose of A.
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Example:
Find the general solution of the system of linear differential equations x′ = Ax where

A =

3 2 4
2 0 2
4 2 3



Theorem 6.3.1 applies because A = AT .

Characteristic equation: det(A− λI) = 0, i.e. −(λ− 8)(λ+ 1)2 = 0.

Eigenvalues: λ1 = 8, λ2 = −1 (double root: we say that λ2 = −1 has algebraic
multiplicity 2).

Eigenvectors of eigenvalue λ1 = 8 are v =

2
1
2

C, where C 6= 0.

Eigenvectors of eigenvalue λ2 = −1 are v =

 c1

−2(c1 + c2)
c2

, where c1, c2 not both

zero.

General solution: x(t) = C1e8t

2
1
2

+ C2e−t

 1
−2
0

+ C3e−t

 0
−2
1

 where

C1,C2,C3 ∈ R.
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Definition
We say that an n × n real matrix A is nondefective if there is a set of n linearly
independent vectors v1, . . . , vn which are eigenvectors of A.
Otherwise, we say that A is defective.

Using this definition, we can restate the assumptions (1) and (2) in Theorem 6.3.1 as
follows:

Suppose that A is an n×n nondefective matrix with real eigenvalues λ1, . . . , λn.
Let v1, . . . , vn be n linealry independent corresponding eigenvectors (they exist
as A is nondefective).
Then etc.

We also restate the following in terms of nondefective matrices:

If A has n distinct eigenvalues, then the corresponding eigenvectors are n
linearly independent vectors. So A is nondefective.

Every symmetric matrix A (i.e. AT = A) is nondefective (and moreover, it has all
real eigenvalues).

In the next section we will look at the general solution of the system x′ = Ax where A
is nondefective but its eigenvalues are not necessarily real.
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