Section 6.3: Homogenous linear systems with constant coeffs.

Consider the system $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ where A is a $n \times n$ matrix with real coefficients.

Theorem (Theorem 6.3.1 - cf. Section 3.3 for $n=2$)

Suppose that:
(1) A has real (not necessarily distinct) eigenvalues $\lambda_{1}, \cdots, \lambda_{n}$,
(2) \mathbf{A} has eigenvectors $\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}$ associated with the eigenvalues $\lambda_{1}, \cdots, \lambda_{n}$, respectively, so that $\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}$ are linearly independent.
Then the vector functions

$$
\mathbf{x}_{1}(t)=e^{\lambda_{1} t} \mathbf{v}_{1}, \ldots, \mathbf{x}_{n}(t)=e^{\lambda_{n} t} \mathbf{v}_{n}
$$

form a fundamental set of solutions of the system $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ on $\mathbb{R}=(-\infty,+\infty)$.

Section 6.3: Homogenous linear systems with constant coeffs.

Consider the system $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ where A is a $n \times n$ matrix with real coefficients.

Theorem (Theorem 6.3.1 - cf. Section 3.3 for $n=2$)

Suppose that:
(1) A has real (not necessarily distinct) eigenvalues $\lambda_{1}, \cdots, \lambda_{n}$,
(2) \mathbf{A} has eigenvectors $\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}$ associated with the eigenvalues $\lambda_{1}, \cdots, \lambda_{n}$, respectively, so that $\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}$ are linearly independent.
Then the vector functions

$$
\mathbf{x}_{1}(t)=e^{\lambda_{1} t} \mathbf{v}_{1}, \ldots, \mathbf{x}_{n}(t)=e^{\lambda_{n} t} \mathbf{v}_{n}
$$

form a fundamental set of solutions of the system $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ on $\mathbb{R}=(-\infty,+\infty)$.
The general solution of $\mathbf{x}^{\prime}=\mathbf{A x}$ on \mathbb{R} is

$$
\mathbf{x}(t)=C_{1} e^{\lambda_{1} t} \mathbf{v}_{1}+\cdots+C_{n} e^{\lambda_{n} t} \mathbf{v}_{n}
$$

where $t \in \mathbb{R}$ and C_{1}, \ldots, C_{n} are constants.

Section 6.3: Homogenous linear systems with constant coeffs.

Consider the system $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ where A is a $n \times n$ matrix with real coefficients.

Theorem (Theorem 6.3.1 - cf. Section 3.3 for $n=2$)

Suppose that:
(1) A has real (not necessarily distinct) eigenvalues $\lambda_{1}, \cdots, \lambda_{n}$,
(2) \mathbf{A} has eigenvectors $\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}$ associated with the eigenvalues $\lambda_{1}, \cdots, \lambda_{n}$, respectively, so that $\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}$ are linearly independent.
Then the vector functions

$$
\mathbf{x}_{1}(t)=e^{\lambda_{1} t} \mathbf{v}_{1}, \ldots, \mathbf{x}_{n}(t)=e^{\lambda_{n} t} \mathbf{v}_{n}
$$

form a fundamental set of solutions of the system $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ on $\mathbb{R}=(-\infty,+\infty)$. The general solution of $\mathbf{x}^{\prime}=\mathbf{A x}$ on \mathbb{R} is

$$
\mathbf{x}(t)=C_{1} e^{\lambda_{1} t} \mathbf{v}_{1}+\cdots+C_{n} e^{\lambda_{n} t} \mathbf{v}_{n}
$$

where $t \in \mathbb{R}$ and C_{1}, \ldots, C_{n} are constants.

- (2) is satisfied if the eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ are all distinct (Corollary 6.3.2).
- both (1) and (2) are satisfied if \mathbf{A} is symmetric, i.e. $\mathbf{A}=\mathbf{A}^{T}$, where \mathbf{A}^{T} denotes the transpose of \mathbf{A}.

Example:

Find the general solution of the system of linear differential equations $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ where

$$
A=\left(\begin{array}{lll}
3 & 2 & 4 \\
2 & 0 & 2 \\
4 & 2 & 3
\end{array}\right)
$$

Example:

Find the general solution of the system of linear differential equations $\mathbf{x}^{\prime}=\mathbf{A x}$ where

$$
A=\left(\begin{array}{lll}
3 & 2 & 4 \\
2 & 0 & 2 \\
4 & 2 & 3
\end{array}\right)
$$

Theorem 6.3.1 applies because $\mathbf{A}=\mathbf{A}^{T}$.

Example:

Find the general solution of the system of linear differential equations $\mathbf{x}^{\prime}=\mathbf{A x}$ where

$$
A=\left(\begin{array}{lll}
3 & 2 & 4 \\
2 & 0 & 2 \\
4 & 2 & 3
\end{array}\right)
$$

Theorem 6.3.1 applies because $\mathbf{A}=\mathbf{A}^{T}$.
Characteristic equation: $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0$, i.e. $-(\lambda-8)(\lambda+1)^{2}=0$.

Example:

Find the general solution of the system of linear differential equations $\mathbf{x}^{\prime}=\mathbf{A x}$ where

$$
A=\left(\begin{array}{lll}
3 & 2 & 4 \\
2 & 0 & 2 \\
4 & 2 & 3
\end{array}\right)
$$

Theorem 6.3.1 applies because $\mathbf{A}=\mathbf{A}^{T}$.
Characteristic equation: $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0$, i.e. $-(\lambda-8)(\lambda+1)^{2}=0$.
Eigenvalues: $\lambda_{1}=8, \lambda_{2}=-1$ (double root: we say that $\lambda_{2}=-1$ has algebraic multiplicity 2).

Example:

Find the general solution of the system of linear differential equations $\mathbf{x}^{\prime}=\mathbf{A x}$ where

$$
A=\left(\begin{array}{lll}
3 & 2 & 4 \\
2 & 0 & 2 \\
4 & 2 & 3
\end{array}\right)
$$

Theorem 6.3.1 applies because $\mathbf{A}=\mathbf{A}^{T}$.
Characteristic equation: $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0$, i.e. $-(\lambda-8)(\lambda+1)^{2}=0$.
Eigenvalues: $\lambda_{1}=8, \lambda_{2}=-1$ (double root: we say that $\lambda_{2}=-1$ has algebraic multiplicity 2).
Eigenvectors of eigenvalue $\lambda_{1}=8$ are $\mathbf{v}=\left(\begin{array}{l}2 \\ 1 \\ 2\end{array}\right) C$, where $C \neq 0$.

Example:

Find the general solution of the system of linear differential equations $\mathbf{x}^{\prime}=\mathbf{A x}$ where

$$
A=\left(\begin{array}{lll}
3 & 2 & 4 \\
2 & 0 & 2 \\
4 & 2 & 3
\end{array}\right)
$$

Theorem 6.3.1 applies because $\mathbf{A}=\mathbf{A}^{T}$.
Characteristic equation: $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0$, i.e. $-(\lambda-8)(\lambda+1)^{2}=0$.
Eigenvalues: $\lambda_{1}=8, \lambda_{2}=-1$ (double root: we say that $\lambda_{2}=-1$ has algebraic multiplicity 2).
Eigenvectors of eigenvalue $\lambda_{1}=8$ are $\mathbf{v}=\left(\begin{array}{l}2 \\ 1 \\ 2\end{array}\right) C$, where $C \neq 0$.
Eigenvectors of eigenvalue $\lambda_{2}=-1$ are $\mathbf{v}=\left(\begin{array}{c}c_{1} \\ -2\left(c_{1}+c_{2}\right) \\ c_{2}\end{array}\right)$, where c_{1}, c_{2} not both zero.

Example:

Find the general solution of the system of linear differential equations $\mathbf{x}^{\prime}=\mathbf{A x}$ where

$$
A=\left(\begin{array}{lll}
3 & 2 & 4 \\
2 & 0 & 2 \\
4 & 2 & 3
\end{array}\right)
$$

Theorem 6.3.1 applies because $\mathbf{A}=\mathbf{A}^{T}$.
Characteristic equation: $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0$, i.e. $-(\lambda-8)(\lambda+1)^{2}=0$.
Eigenvalues: $\lambda_{1}=8, \lambda_{2}=-1$ (double root: we say that $\lambda_{2}=-1$ has algebraic multiplicity 2).
Eigenvectors of eigenvalue $\lambda_{1}=8$ are $\mathbf{v}=\left(\begin{array}{l}2 \\ 1 \\ 2\end{array}\right) C$, where $C \neq 0$.
Eigenvectors of eigenvalue $\lambda_{2}=-1$ are $\mathbf{v}=\left(\begin{array}{c}c_{1} \\ -2\left(c_{1}+c_{2}\right) \\ c_{2}\end{array}\right)$, where c_{1}, c_{2} not both zero.
General solution: $\mathbf{x}(t)=C_{1} e^{8 t}\left(\begin{array}{l}2 \\ 1 \\ 2\end{array}\right)+C_{2} e^{-t}\left(\begin{array}{c}1 \\ -2 \\ 0\end{array}\right)+C_{3} e^{-t}\left(\begin{array}{c}0 \\ -2 \\ 1\end{array}\right)$ where $C_{1}, C_{2}, C_{3} \in \mathbb{R}$.

Definition

We say that an $n \times n$ real matrix \mathbf{A} is nondefective if there is a set of n linearly independent vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ which are eigenvectors of \mathbf{A}. Otherwise, we say that \mathbf{A} is defective.

Definition

We say that an $n \times n$ real matrix \mathbf{A} is nondefective if there is a set of n linearly independent vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ which are eigenvectors of \mathbf{A}. Otherwise, we say that \mathbf{A} is defective.

Using this definition, we can restate the assumptions (1) and (2) in Theorem 6.3.1 as follows:

Suppose that \mathbf{A} is an $n \times n$ nondefective matrix with real eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ be n linealry independent corresponding eigenvectors (they exist as \mathbf{A} is nondefective).
Then etc.

Definition

We say that an $n \times n$ real matrix \mathbf{A} is nondefective if there is a set of n linearly independent vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ which are eigenvectors of \mathbf{A}.
Otherwise, we say that \mathbf{A} is defective.
Using this definition, we can restate the assumptions (1) and (2) in Theorem 6.3.1 as follows:

Suppose that \mathbf{A} is an $n \times n$ nondefective matrix with real eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ be n linealry independent corresponding eigenvectors (they exist as \mathbf{A} is nondefective).
Then etc.
We also restate the following in terms of nondefective matrices:

- If \mathbf{A} has n distinct eigenvalues, then the corresponding eigenvectors are n linearly independent vectors. So \mathbf{A} is nondefective.
- Every symmetric matrix \mathbf{A} (i.e. $\mathbf{A}^{T}=\mathbf{A}$) is nondefective (and moreover, it has all real eigenvalues).

Definition

We say that an $n \times n$ real matrix \mathbf{A} is nondefective if there is a set of n linearly independent vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ which are eigenvectors of \mathbf{A}.
Otherwise, we say that \mathbf{A} is defective.
Using this definition, we can restate the assumptions (1) and (2) in Theorem 6.3.1 as follows:

Suppose that \mathbf{A} is an $n \times n$ nondefective matrix with real eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ be n linealry independent corresponding eigenvectors (they exist as \mathbf{A} is nondefective).
Then etc.

We also restate the following in terms of nondefective matrices:

- If \mathbf{A} has n distinct eigenvalues, then the corresponding eigenvectors are n linearly independent vectors. So \mathbf{A} is nondefective.
- Every symmetric matrix \mathbf{A} (i.e. $\mathbf{A}^{T}=\mathbf{A}$) is nondefective (and moreover, it has all real eigenvalues).

In the next section we will look at the general solution of the system $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ where \mathbf{A} is nondefective but its eigenvalues are not necessarily real.

