Section 6.3: Homogenous linear systems with constant coeffs.

Consider the system $\mathbf{x}' = \mathbf{A}\mathbf{x}$ where *A* is a $n \times n$ matrix with real coefficients.

Theorem (Theorem 6.3.1 – cf. Section 3.3 for n = 2)

Suppose that:

- (1) **A** has **real** (not necessarily distinct) eigenvalues $\lambda_1, \dots, \lambda_n$,
- (2) A has eigenvectors $\mathbf{v}_1, \dots, \mathbf{v}_n$ associated with the eigenvalues $\lambda_1, \dots, \lambda_n$, respectively, so that $\mathbf{v}_1, \dots, \mathbf{v}_n$ are **linearly independent**.

Then the vector functions

$$\mathbf{x}_1(t) = \mathbf{e}^{\lambda_1 t} \mathbf{v}_1, \dots, \mathbf{x}_n(t) = \mathbf{e}^{\lambda_n t} \mathbf{v}_n$$

form a fundamental set of solutions of the system $\mathbf{x}' = \mathbf{A}\mathbf{x}$ on $\mathbb{R} = (-\infty, +\infty)$.

Section 6.3: Homogenous linear systems with constant coeffs.

Consider the system $\mathbf{x}' = \mathbf{A}\mathbf{x}$ where *A* is a $n \times n$ matrix with real coefficients.

Theorem (Theorem 6.3.1 – cf. Section 3.3 for n = 2)

Suppose that:

- (1) **A** has **real** (not necessarily distinct) eigenvalues $\lambda_1, \dots, \lambda_n$,
- (2) A has eigenvectors $\mathbf{v}_1, \dots, \mathbf{v}_n$ associated with the eigenvalues $\lambda_1, \dots, \lambda_n$, respectively, so that $\mathbf{v}_1, \dots, \mathbf{v}_n$ are **linearly independent**.

Then the vector functions

$$\mathbf{x}_1(t) = e^{\lambda_1 t} \mathbf{v}_1, \dots, \mathbf{x}_n(t) = e^{\lambda_n t} \mathbf{v}_n$$

form a fundamental set of solutions of the system $\mathbf{x}' = \mathbf{A}\mathbf{x}$ on $\mathbb{R} = (-\infty, +\infty)$. The general solution of $\mathbf{x}' = \mathbf{A}\mathbf{x}$ on \mathbb{R} is

$$\mathbf{x}(t) = C_1 e^{\lambda_1 t} \mathbf{v}_1 + \cdots + C_n e^{\lambda_n t} \mathbf{v}_n$$

where $t \in \mathbb{R}$ and C_1, \ldots, C_n are constants.

Section 6.3: Homogenous linear systems with constant coeffs.

Consider the system $\mathbf{x}' = \mathbf{A}\mathbf{x}$ where *A* is a $n \times n$ matrix with real coefficients.

Theorem (Theorem 6.3.1 – cf. Section 3.3 for n = 2)

Suppose that:

- (1) **A** has **real** (not necessarily distinct) eigenvalues $\lambda_1, \dots, \lambda_n$,
- (2) A has eigenvectors $\mathbf{v}_1, \dots, \mathbf{v}_n$ associated with the eigenvalues $\lambda_1, \dots, \lambda_n$, respectively, so that $\mathbf{v}_1, \dots, \mathbf{v}_n$ are **linearly independent**.

Then the vector functions

$$\mathbf{x}_1(t) = e^{\lambda_1 t} \mathbf{v}_1, \dots, \mathbf{x}_n(t) = e^{\lambda_n t} \mathbf{v}_n$$

form a fundamental set of solutions of the system $\mathbf{x}' = \mathbf{A}\mathbf{x}$ on $\mathbb{R} = (-\infty, +\infty)$. The general solution of $\mathbf{x}' = \mathbf{A}\mathbf{x}$ on \mathbb{R} is

$$\mathbf{x}(t) = C_1 e^{\lambda_1 t} \mathbf{v}_1 + \cdots + C_n e^{\lambda_n t} \mathbf{v}_n$$

where $t \in \mathbb{R}$ and C_1, \ldots, C_n are constants.

- (2) is satisfied if the eigenvalues λ₁,..., λ_n are all distinct (Corollary 6.3.2).
- both (1) and (2) are satisfied if **A** is **symmetric**, i.e. $\mathbf{A} = \mathbf{A}^T$, where \mathbf{A}^T denotes the transpose of **A**.

Find the general solution of the system of linear differential equations $\mathbf{x}' = \mathbf{A}\mathbf{x}$ where

$$A = \begin{pmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{pmatrix}$$

Find the general solution of the system of linear differential equations $\mathbf{x}' = \mathbf{A}\mathbf{x}$ where

$$A = \begin{pmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{pmatrix}$$

Theorem 6.3.1 applies because $\mathbf{A} = \mathbf{A}^{T}$.

Find the general solution of the system of linear differential equations $\mathbf{x}' = \mathbf{A}\mathbf{x}$ where

$$A = \begin{pmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{pmatrix}$$

Theorem 6.3.1 applies because $\mathbf{A} = \mathbf{A}^{T}$.

Characteristic equation: det($\mathbf{A} - \lambda \mathbf{I}$) = 0, i.e. $-(\lambda - 8)(\lambda + 1)^2 = 0$.

Find the general solution of the system of linear differential equations $\mathbf{x}' = \mathbf{A}\mathbf{x}$ where

$$A = \begin{pmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{pmatrix}$$

Theorem 6.3.1 applies because $\mathbf{A} = \mathbf{A}^{T}$.

Characteristic equation: det($\mathbf{A} - \lambda \mathbf{I}$) = 0, i.e. $-(\lambda - 8)(\lambda + 1)^2 = 0$.

Eigenvalues: $\lambda_1 = 8$, $\lambda_2 = -1$ (double root: we say that $\lambda_2 = -1$ has algebraic multiplicity 2).

Find the general solution of the system of linear differential equations $\mathbf{x}' = \mathbf{A}\mathbf{x}$ where

$$A = \begin{pmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{pmatrix}$$

Theorem 6.3.1 applies because $\mathbf{A} = \mathbf{A}^{T}$.

Characteristic equation: det($\mathbf{A} - \lambda \mathbf{I}$) = 0, i.e. $-(\lambda - 8)(\lambda + 1)^2 = 0$.

Eigenvalues: $\lambda_1 = 8$, $\lambda_2 = -1$ (double root: we say that $\lambda_2 = -1$ has algebraic multiplicity 2).

Eigenvectors of eigenvalue
$$\lambda_1 = 8$$
 are $\mathbf{v} = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} C$, where $C \neq 0$.

Find the general solution of the system of linear differential equations $\mathbf{x}' = \mathbf{A}\mathbf{x}$ where

$$A = \begin{pmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{pmatrix}$$

Theorem 6.3.1 applies because $\mathbf{A} = \mathbf{A}^{T}$.

Characteristic equation: det($\mathbf{A} - \lambda \mathbf{I}$) = 0, i.e. $-(\lambda - 8)(\lambda + 1)^2 = 0$.

Eigenvalues: $\lambda_1 = 8$, $\lambda_2 = -1$ (double root: we say that $\lambda_2 = -1$ has algebraic multiplicity 2).

Eigenvectors of eigenvalue
$$\lambda_1 = 8$$
 are $\mathbf{v} = \begin{pmatrix} 2\\1\\2 \end{pmatrix} C$, where $C \neq 0$.
Eigenvectors of eigenvalue $\lambda_2 = -1$ are $\mathbf{v} = \begin{pmatrix} c_1\\-2(c_1 + c_2)\\c_2 \end{pmatrix}$, where c_1, c_2 not both zero.

Find the general solution of the system of linear differential equations $\mathbf{x}' = \mathbf{A}\mathbf{x}$ where

$$A = \begin{pmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{pmatrix}$$

Theorem 6.3.1 applies because $\mathbf{A} = \mathbf{A}^{T}$.

Characteristic equation: det($\mathbf{A} - \lambda \mathbf{I}$) = 0, i.e. $-(\lambda - 8)(\lambda + 1)^2 = 0$.

Eigenvalues: $\lambda_1 = 8$, $\lambda_2 = -1$ (double root: we say that $\lambda_2 = -1$ has algebraic multiplicity 2).

Eigenvectors of eigenvalue
$$\lambda_1 = 8$$
 are $\mathbf{v} = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} C$, where $C \neq 0$.
Eigenvectors of eigenvalue $\lambda_2 = -1$ are $\mathbf{v} = \begin{pmatrix} c_1 \\ -2(c_1 + c_2) \\ c_2 \end{pmatrix}$, where c_1, c_2 not both zero.

General solution:
$$\mathbf{x}(t) = C_1 e^{8t} \begin{pmatrix} 2\\1\\2 \end{pmatrix} + C_2 e^{-t} \begin{pmatrix} 1\\-2\\0 \end{pmatrix} + C_3 e^{-t} \begin{pmatrix} 0\\-2\\1 \end{pmatrix}$$
 where

 $C_1, C_2, C_3 \in \mathbb{R}.$

We say that an $n \times n$ real matrix **A** is **nondefective** if there is a set of *n* linearly independent vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ which are eigenvectors of **A**. Otherwise, we say that **A** is **defective**.

We say that an $n \times n$ real matrix **A** is **nondefective** if there is a set of *n* linearly independent vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ which are eigenvectors of **A**. Otherwise, we say that **A** is **defective**.

Using this definition, we can restate the assumptions (1) and (2) in Theorem 6.3.1 as follows:

Suppose that **A** is an $n \times n$ nondefective matrix with real eigenvalues $\lambda_1, \ldots, \lambda_n$. Let $\mathbf{v}_1, \ldots, \mathbf{v}_n$ be *n* linealry independent corresponding eigenvectors (they exist as **A** is nondefective).

Then etc.

We say that an $n \times n$ real matrix **A** is **nondefective** if there is a set of *n* linearly independent vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ which are eigenvectors of **A**. Otherwise, we say that **A** is **defective**.

Using this definition, we can restate the assumptions (1) and (2) in Theorem 6.3.1 as follows:

Suppose that **A** is an $n \times n$ nondefective matrix with real eigenvalues $\lambda_1, \ldots, \lambda_n$. Let $\mathbf{v}_1, \ldots, \mathbf{v}_n$ be *n* linealry independent corresponding eigenvectors (they exist as **A** is nondefective). Then etc.

We also restate the following in terms of nondefective matrices:

- If **A** has *n* distinct eigenvalues, then the corresponding eigenvectors are *n* linearly independent vectors. So **A** is nondefective.
- Every symmetric matrix A (i.e. A^T = A) is nondefective (and moreover, it has all real eigenvalues).

(日)

We say that an $n \times n$ real matrix **A** is **nondefective** if there is a set of *n* linearly independent vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ which are eigenvectors of **A**. Otherwise, we say that **A** is **defective**.

Using this definition, we can restate the assumptions (1) and (2) in Theorem 6.3.1 as follows:

Suppose that **A** is an $n \times n$ nondefective matrix with real eigenvalues $\lambda_1, \ldots, \lambda_n$. Let $\mathbf{v}_1, \ldots, \mathbf{v}_n$ be *n* linealry independent corresponding eigenvectors (they exist as **A** is nondefective). Then etc.

We also restate the following in terms of nondefective matrices:

- If **A** has *n* distinct eigenvalues, then the corresponding eigenvectors are *n* linearly independent vectors. So **A** is nondefective.
- Every symmetric matrix A (i.e. A^T = A) is nondefective (and moreover, it has all real eigenvalues).

In the next section we will look at the general solution of the system $\mathbf{x}' = \mathbf{A}\mathbf{x}$ where \mathbf{A} is nondefective but its eigenvalues are not necessarily real.