Chapter 7: Nonlinear DE and Stability

Section 7.1: Autonomous Systems and Stability

Main Topics:

- Autonomous systems
- Stability and asymptotic stability:
precise mathematical definitions of stable, asymptotically stable, and unstable equilibrium solutions.
- Basins of attraction
- The oscillating pendulum.

Recall from section 3.6:

- A system of DE $\left\{\begin{array}{l}\frac{d x}{d t}=F(x, y) \\ \frac{d y}{d t}=G(x, y)\end{array} \quad\right.$ in which the functions F and G do not depend on the independent variable t is said to be autonomous. An IVP for such a system corresponds to initial conditions $x\left(t_{0}\right)=x_{0}, y\left(t_{0}\right)=y_{0}$.

Recall from section 3.6:

- A system of DE $\left\{\begin{array}{l}\frac{d x}{d t}=F(x, y) \\ \frac{d y}{d t}=G(x, y)\end{array} \quad\right.$ in which the functions F and G do not depend on the independent variable t is said to be autonomous. An IVP for such a system corresponds to initial conditions $x\left(t_{0}\right)=x_{0}, y\left(t_{0}\right)=y_{0}$.
- Theorem 3.6.1: Suppose both F and G are continuous functions of (x, y) in a domain D of the $x y$-plane and let $\left(x_{0}, y_{0}\right) \in D$. Then there is a unique solution of the system satisfying the initial condition $x\left(t_{0}\right)=x_{0}$ and $y\left(t_{0}\right)=y_{0}$. This solution is in general only defined for some values of t in a small interval $/$ containing t_{0}.

Recall from section 3.6:

- A system of DE $\left\{\begin{array}{l}\frac{d x}{d t}=F(x, y) \\ \frac{d y}{d t}=G(x, y)\end{array} \quad\right.$ in which the functions F and G do not depend on the independent variable t is said to be autonomous. An IVP for such a system corresponds to initial conditions $x\left(t_{0}\right)=x_{0}, y\left(t_{0}\right)=y_{0}$.
- Theorem 3.6.1: Suppose both F and G are continuous functions of (x, y) in a domain D of the $x y$-plane and let $\left(x_{0}, y_{0}\right) \in D$. Then there is a unique solution of the system satisfying the initial condition $x\left(t_{0}\right)=x_{0}$ and $y\left(t_{0}\right)=y_{0}$. This solution is in general only defined for some values of t in a small interval / containing t_{0}.

Matrix notation:

$$
\mathbf{x}^{\prime}=\mathbf{f}(\mathbf{x}) \quad \text { with initial condition } \quad \mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0}
$$

where

$$
\mathbf{x}(t)=\binom{x(t)}{y(t)} \quad \mathbf{f}(\mathbf{x})=\binom{F(x, y)}{G(x, y)}, \quad \text { and } \quad \mathbf{x}\left(t_{0}\right)=\binom{x_{0}}{y_{0}}
$$

Recall from section 3.6:

- A system of DE $\left\{\begin{array}{l}\frac{d x}{d t}=F(x, y) \\ \frac{d y}{d t}=G(x, y)\end{array} \quad\right.$ in which the functions F and G do not depend on the independent variable t is said to be autonomous. An IVP for such a system corresponds to initial conditions $x\left(t_{0}\right)=x_{0}, y\left(t_{0}\right)=y_{0}$.
- Theorem 3.6.1: Suppose both F and G are continuous functions of (x, y) in a domain D of the $x y$-plane and let $\left(x_{0}, y_{0}\right) \in D$. Then there is a unique solution of the system satisfying the initial condition $x\left(t_{0}\right)=x_{0}$ and $y\left(t_{0}\right)=y_{0}$. This solution is in general only defined for some values of t in a small interval / containing t_{0}.

Matrix notation:

$$
\mathbf{x}^{\prime}=\mathbf{f}(\mathbf{x}) \quad \text { with initial condition } \quad \mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0}
$$

where

$$
\mathbf{x}(t)=\binom{x(t)}{y(t)} \quad \mathbf{f}(\mathbf{x})=\binom{F(x, y)}{G(x, y)}, \quad \text { and } \quad \mathbf{x}\left(t_{0}\right)=\binom{x_{0}}{y_{0}}
$$

Setting

$$
\mathbf{i}=\binom{1}{0} \quad \text { and } \quad \mathbf{j}=\binom{0}{1}
$$

we can also write

$$
\mathbf{x}(t)=x(t) \mathbf{i}+y(t) \mathbf{j} \quad \text { and } \quad \mathbf{f}(\mathbf{x})=F(x, y) \mathbf{i}+G(x, y) \mathbf{j}
$$

Stability of an autonomous system

Consider the autonomous system of $\mathrm{DE}: \mathbf{x}^{\prime}=\mathbf{f}(\mathbf{x})$ where $\mathbf{x}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}$.

Stability of an autonomous system

Consider the autonomous system of $\mathrm{DE}: \mathbf{x}^{\prime}=\mathbf{f}(\mathbf{x})$ where $\mathbf{x}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}$.
Recall from Chapter 3:

Stability of an autonomous system

Consider the autonomous system of DE: $\mathbf{x}^{\prime}=\mathbf{f}(\mathbf{x})$ where $\mathbf{x}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}$.
Recall from Chapter 3:
The equilibrium solutions or critical points of this DE are those solutions \mathbf{x} such that $\mathbf{f}(\mathbf{x})=\mathbf{0}$. This means that $\mathbf{x}^{\prime}=\mathbf{0}$, i.e. \mathbf{x} is a solution which is constant in time. In the phase plane, the trajectory of an equilibrium solution or critical point is a single point.

Stability of an autonomous system

Consider the autonomous system of DE: $\mathbf{x}^{\prime}=\mathbf{f}(\mathbf{x})$ where $\mathbf{x}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}$.
Recall from Chapter 3:
The equilibrium solutions or critical points of this DE are those solutions \mathbf{x} such that $\mathbf{f}(\mathbf{x})=\mathbf{0}$. This means that $\mathbf{x}^{\prime}=\mathbf{0}$, i.e. \mathbf{x} is a solution which is constant in time. In the phase plane, the trajectory of an equilibrium solution or critical point is a single point.

Example: Find all critical points of the system of DE's:

$$
d x / d t=-(x+y)(2+y) \quad d y / d t=-y(1-x)
$$

Stability of an autonomous system

Consider the autonomous system of $\mathrm{DE}: \mathbf{x}^{\prime}=\mathbf{f}(\mathbf{x})$ where $\mathbf{x}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}$.
Recall from Chapter 3:
The equilibrium solutions or critical points of this DE are those solutions \mathbf{x} such that $\mathbf{f}(\mathbf{x})=\mathbf{0}$. This means that $\mathbf{x}^{\prime}=\mathbf{0}$, i.e. \mathbf{x} is a solution which is constant in time. In the phase plane, the trajectory of an equilibrium solution or critical point is a single point.

Example: Find all critical points of the system of DE's:

$$
d x / d t=-(x+y)(2+y) \quad d y / d t=-y(1-x)
$$

The critical points are the solutions of the (non-linear) system:
$\left\{\begin{array}{l}(x+y)(2+y)=0 \\ y(1-x)=0\end{array}\right.$

Stability of an autonomous system

Consider the autonomous system of $\mathrm{DE}: \mathbf{x}^{\prime}=\mathbf{f}(\mathbf{x})$ where $\mathbf{x}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}$.
Recall from Chapter 3:
The equilibrium solutions or critical points of this DE are those solutions \mathbf{x} such that $\mathbf{f}(\mathbf{x})=\mathbf{0}$. This means that $\mathbf{x}^{\prime}=\mathbf{0}$, i.e. \mathbf{x} is a solution which is constant in time. In the phase plane, the trajectory of an equilibrium solution or critical point is a single point.

Example: Find all critical points of the system of DE's:

$$
d x / d t=-(x+y)(2+y) \quad d y / d t=-y(1-x)
$$

The critical points are the solutions of the (non-linear) system:
$\left\{\begin{array}{l}(x+y)(2+y)=0 \\ y(1-x)=0\end{array} \longrightarrow\left\{\begin{array}{l}y=0 \\ x=1\end{array}\right.\right.$

Stability of an autonomous system

Consider the autonomous system of $\mathrm{DE}: \mathbf{x}^{\prime}=\mathbf{f}(\mathbf{x})$ where $\mathbf{x}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}$.
Recall from Chapter 3:
The equilibrium solutions or critical points of this DE are those solutions \mathbf{x} such that $\mathbf{f}(\mathbf{x})=\mathbf{0}$. This means that $\mathbf{x}^{\prime}=\mathbf{0}$, i.e. \mathbf{x} is a solution which is constant in time. In the phase plane, the trajectory of an equilibrium solution or critical point is a single point.

Example: Find all critical points of the system of DE's:

$$
d x / d t=-(x+y)(2+y) \quad d y / d t=-y(1-x)
$$

The critical points are the solutions of the (non-linear) system:
$\left\{\begin{array}{l}(x+y)(2+y)=0 \\ y(1-x)=0\end{array} \longrightarrow\left\{\begin{array}{l}y=0 \\ x=1\end{array}\right.\right.$
If $y=0$, the first equation gives $2 x=0$, i.e. $x=0$. This gives a critical point $(0,0)$.

Stability of an autonomous system

Consider the autonomous system of DE: $\mathbf{x}^{\prime}=\mathbf{f}(\mathbf{x})$ where $\mathbf{x}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}$.
Recall from Chapter 3:
The equilibrium solutions or critical points of this DE are those solutions \mathbf{x} such that $\mathbf{f}(\mathbf{x})=\mathbf{0}$. This means that $\mathbf{x}^{\prime}=\mathbf{0}$, i.e. \mathbf{x} is a solution which is constant in time. In the phase plane, the trajectory of an equilibrium solution or critical point is a single point.

Example: Find all critical points of the system of DE's:

$$
d x / d t=-(x+y)(2+y) \quad d y / d t=-y(1-x)
$$

The critical points are the solutions of the (non-linear) system:
$\left\{\begin{array}{l}(x+y)(2+y)=0 \\ y(1-x)=0\end{array} \longrightarrow\left\{\begin{array}{l}y=0 \\ x=1\end{array}\right.\right.$
If $y=0$, the first equation gives $2 x=0$, i.e. $x=0$. This gives a critical point $(0,0)$.
If $x=1$, the first equation gives $(1+y)(2+y)=0$, i.e. $y=-1$ or $y=-2$.
This gives two critical points: $(1,-1),(1,-2)$.

[^0][^1]
Notation:

The magnitude (or length) of $\mathbf{x}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}$ is $\|\mathbf{x}(t)\|=\sqrt{x(t)^{2}+y(t)^{2}}$. If $\mathbf{x}=x \mathbf{i}+y \mathbf{j}, \mathbf{x}_{0}=x_{0} \mathbf{i}+y_{0} \mathbf{j}$, then $\left\|\mathbf{x}-\mathbf{x}_{0}\right\|$ gives the distance between \mathbf{x} and \mathbf{x}_{0}.

Definition

A critical point \mathbf{x}_{0} of the system $\mathbf{x}^{\prime}=\mathbf{f}(\mathbf{x})$ is said to be stable provided: for any $\epsilon>0$, there exists a $\delta>0$ such that

- every solution $\mathbf{x}=\Phi(t)$ of the system which satisfies

$$
\left\|\Phi(0)-\mathbf{x}_{0}\right\|<\delta
$$

exists for all $t \geq 0$ and

- it satisfies

$$
\left\|\Phi(t)-\mathbf{x}_{0}\right\|<\epsilon
$$

for all $t \geq 0$.
A critical point which is not stable is said to be unstable.
Remark: roughly speaking, the second condition means that no matter how small we choose $\epsilon>0$ we can find a (smaller) $\delta>0$ so that all solutions that start "sufficiently close" (=within the distance δ) to \mathbf{x}_{0}, remain within the distance ϵ from \mathbf{x}_{0} for all times.

Definition

A critical point \mathbf{x}_{0} of the system $\mathbf{x}^{\prime}=\mathbf{f}(\mathbf{x})$ is said to be asymptotically stable if

- it is stable, and
- there exists $\delta>0$ such that every solution $\mathbf{x}=\Phi(t)$ of the system which satisfies

$$
\left\|\Phi(0)-\mathbf{x}_{0}\right\|<\delta
$$

then $\lim _{t \rightarrow+\infty} \Phi(t)=\mathbf{x}_{\mathbf{0}}$
Remark: all solutions that start "sufficiently close" (=within a distance δ) to \mathbf{x}_{0} must stay "close" to \mathbf{x}_{0} and approach \mathbf{x}_{0} as $t \rightarrow+\infty$.

Definition

A critical point \mathbf{x}_{0} of the system $\mathbf{x}^{\prime}=\mathbf{f}(\mathbf{x})$ is said to be asymptotically stable if

- it is stable, and
- there exists $\delta>0$ such that every solution $\mathbf{x}=\Phi(t)$ of the system which satisfies

$$
\left\|\Phi(0)-\mathbf{x}_{0}\right\|<\delta
$$

then $\lim _{t \rightarrow+\infty} \Phi(t)=\mathbf{x}_{\mathbf{0}}$
Remark: all solutions that start "sufficiently close" (=within a distance δ) to \mathbf{x}_{0} must stay "close" to \mathbf{x}_{0} and approach \mathbf{x}_{0} as $t \rightarrow+\infty$.

Definition

Let \mathbf{x}_{0} be an asymptotically stable critical point.
The basin of attraction of \mathbf{x}_{0} is the set of all points P in the $x y$-plane that have the property that a trajectory (solution) starting at P approches \mathbf{x}_{0} as $t \rightarrow+\infty$.

A trajectory that bounds a basin of attraction is called a separatrix.

Example: Consider the system

$$
d x / d t=-(x+y)(2+y) \quad d y / d t=-y(1-x)
$$

The critical points are $(0,0),(1,-1)$ and $(1,-2)$.

- Using the drawing of the direction field and the phase portrait below to determine whether each critical point is stable, asymptotically stable or unstable.
- Determine the basins of attraction of the asymptotically stable critical points.

Type and stability of the critical points:

Basins of attractions of the asymtoptically stable critical points:

- the yellow area for $(1,-1)$;
- all the rest but the separatrices for $(0,0)$

The oscillating pendulum

The equation of motion of the oscillating pendulum represented below is

$$
\frac{d^{2} \theta}{d t^{2}}+\gamma \frac{d \theta}{d t}+\omega^{2} \sin \theta=0
$$

where

- m is the mass attached to one end of a rigid but weighless rod,
- L is the length of the rod,
- θ, the unknown describing the motion, is the angle beween the rod and the vertical downward direction, with counterclockwise direction taken as positive.
- $\gamma=c / m L$ is the damping factor (a constant),
- $\omega^{2}=g / L$ (with $m g=$ weight of the mass m)

The DE

$$
\frac{d^{2} \theta}{d t^{2}}+\gamma \frac{d \theta}{d t}+\omega^{2} \sin \theta=0
$$

is nonlinear (because of $\sin \theta$).

The DE

$$
\frac{d^{2} \theta}{d t^{2}}+\gamma \frac{d \theta}{d t}+\omega^{2} \sin \theta=0
$$

is nonlinear (because of $\sin \theta$).
Setting $x=\theta$ and $y=\frac{d \theta}{d t}$ transforms the pendulum equation into the autonomous system of 1st order DE:

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=y \\
\frac{d y}{d t}=-\omega^{2} \sin x-\gamma y
\end{array}\right.
$$

The DE

$$
\frac{d^{2} \theta}{d t^{2}}+\gamma \frac{d \theta}{d t}+\omega^{2} \sin \theta=0
$$

is nonlinear (because of $\sin \theta$).
Setting $x=\theta$ and $y=\frac{d \theta}{d t}$ transforms the pendulum equation into the autonomous system of 1 st order DE:

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=y \\
\frac{d y}{d t}=-\omega^{2} \sin x-\gamma y
\end{array}\right.
$$

To find the critical points of this system, one solves the system

$$
\left\{\begin{array}{l}
y=0 \\
-\omega^{2} \sin x-\gamma y=0
\end{array}\right.
$$

So: the critical points are the points $(x, y)=(\pm n \pi, 0)$, where n is an integer.

The DE

$$
\frac{d^{2} \theta}{d t^{2}}+\gamma \frac{d \theta}{d t}+\omega^{2} \sin \theta=0
$$

is nonlinear (because of $\sin \theta$).
Setting $x=\theta$ and $y=\frac{d \theta}{d t}$ transforms the pendulum equation into the autonomous system of 1 st order DE:

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=y \\
\frac{d y}{d t}=-\omega^{2} \sin x-\gamma y
\end{array}\right.
$$

To find the critical points of this system, one solves the system

$$
\left\{\begin{array}{l}
y=0 \\
-\omega^{2} \sin x-\gamma y=0
\end{array}\right.
$$

So: the critical points are the points $(x, y)=(\pm n \pi, 0)$, where n is an integer.
They corresponds to two positions along the vertical $(y=0)$: one below the point of support $(\theta=0,2 \pi, \ldots)$, the other above the point of support ($\theta=\pi, 3 \pi, \ldots$).
Our intuition suggests that the first is stable and the second is unstable.

With damping (by air resistance for instance):

With damping (by air resistance for instance):
The critical point $(0,0)$ (i.e. $\theta=0$) is asymptotically stable : the pendulum will oscillate back and forth with decreasing amplitude as the energy is dissipated by the damping force. The mass will eventually reach the equilibrium position.

The same applies to the critical points $(n \pi, 0)$ with n even, which are also asymptotically stable.

Without damping:

Without damping:

The critical point $(0,0)$ (that is $\theta=0$) is stable but not asymptotically stable: there is no dissipation and the pendulum will oscillate indefinitely with a constant amplitude. The mass remains close to the equilibrium but will never reach it.

The same applies to the critical points $(n \pi, 0)$ with n even, which are also stable but not asymptotically stable if there is no damping.

The critical point $(\pi, 0)$ (i.e. $\theta=\pi)$ is unstable, whether the pendulum is damped or not (by air resistance): the slightest perturbation will cause the mass to fall under the effect of gravity. The pendulum will ultimately approach the lower equilibrium position ($\theta=0$).

The same applies to the critical points ($n \pi, 0$) with n odd, which are also unstable (with or without damping).

Example: Undamped Pendulum with $\omega=2$:

Stable critical points $(n \pi, 0)$ with n even, but no asymptotically stable critical points. Unstable critical points $(n \pi, 0)$ with n odd.
The curves connecting different saddle points are called separatrices because they separates regions of periodic motions along closed ellipses and regions where the motion oscillates along "cos"-like curves.

[^0]: Notation:
 The magnitude (or length) of $\mathbf{x}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}$ is $\|\mathbf{x}(t)\|=\sqrt{x(t)^{2}+y(t)^{2}}$.

[^1]: Notation:
 The magnitude (or length) of $\mathbf{x}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}$ is $\|\mathbf{x}(t)\|=\sqrt{x(t)^{2}+y(t)^{2}}$.
 If $\mathbf{x}=x \mathbf{i}+y \mathbf{j}, \mathbf{x}_{0}=x_{0} \mathbf{i}+y_{0} \mathbf{j}$, then $\left\|\mathbf{x}-\mathbf{x}_{0}\right\|$ gives the distance between \mathbf{x} and \mathbf{x}_{0}.

