
Chapter 7: Nonlinear DE and Stability

Section 7.1: Autonomous Systems and Stability

Main Topics:

Autonomous systems

Stability and asymptotic stability:
precise mathematical definitions of stable, asymptotically stable, and unstable
equilibrium solutions.

Basins of attraction

The oscillating pendulum.
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Recall from section 3.6:

A system of DE


dx
dt

= F (x , y)
dy
dt

= G(x , y)
in which the functions F and G do not

depend on the independent variable t is said to be autonomous.
An IVP for such a system corresponds to initial conditions x(t0) = x0, y(t0) = y0.

Theorem 3.6.1: Suppose both F and G are continuous functions of (x , y) in a
domain D of the xy -plane and let (x0, y0) ∈ D. Then there is a unique solution of
the system satisfying the initial condition x(t0) = x0 and y(t0) = y0. This solution
is in general only defined for some values of t in a small interval I containing t0.

Matrix notation:
x′ = f(x) with initial condition x(t0) = x0

where

x(t) =

(
x(t)
y(t)

)
f(x) =

(
F (x , y)
G(x , y)

)
, and x(t0) =

(
x0

y0

)
.

Setting

i =

(
1
0

)
and j =

(
0
1

)
,

we can also write

x(t) = x(t)i + y(t)j and f(x) = F (x , y)i + G(x , y)j
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Stability of an autonomous system

Consider the autonomous system of DE: x′ = f(x) where x(t) = x(t)i + y(t)j.

Recall from Chapter 3:
The equilibrium solutions or critical points of this DE are those solutions x such
that f(x) = 0. This means that x′ = 0, i.e. x is a solution which is constant in time.

In the phase plane, the trajectory of an equilibrium solution or critical point is a
single point.

Example: Find all critical points of the system of DE’s:

dx/dt = −(x + y)(2 + y) dy/dt = −y(1− x)

The critical points are the solutions of the (non-linear) system:{
(x + y)(2 + y) = 0
y(1− x) = 0 −→

{
y = 0
x = 1

If y = 0, the first equation gives 2x = 0, i.e. x = 0. This gives a critical point (0, 0).

If x = 1, the first equation gives (1 + y)(2 + y) = 0, i.e. y = −1 or y = −2.
This gives two critical points: (1,−1), (1,−2).
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Notation:
The magnitude (or length) of x(t) = x(t)i + y(t)j is ‖x(t)‖ =

√
x(t)2 + y(t)2.

If x = x i + y j, x0 = x0i + y0j, then ‖x− x0‖ gives the distance between x and x0.

Definition
A critical point x0 of the system x′ = f(x) is said to be stable provided:
for any ε > 0, there exists a δ > 0 such that

every solution x = Φ(t) of the system which satisfies

‖Φ(0)− x0‖ < δ

exists for all t ≥ 0 and

it satisfies
‖Φ(t)− x0‖ < ε

for all t ≥ 0.

A critical point which is not stable is said to be unstable.

Remark: roughly speaking, the second condition means that no matter how small we
choose ε > 0 we can find a (smaller) δ > 0 so that all solutions that start “sufficiently
close” (=within the distance δ) to x0, remain within the distance ε from x0 for all times.
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Definition
A critical point x0 of the system x′ = f(x) is said to be asymptotically stable if

it is stable, and

there exists δ > 0 such that every solution x = Φ(t) of the system which satisfies

‖Φ(0)− x0‖ < δ

then limt→+∞ Φ(t) = x0

Remark: all solutions that start “sufficiently close” (=within a distance δ) to x0 must
stay “close” to x0 and approach x0 as t → +∞.

Definition
Let x0 be an asymptotically stable critical point.

The basin of attraction of x0 is the set of all points P in the xy -plane that have the
property that a trajectory (solution) starting at P approches x0 as t → +∞.

A trajectory that bounds a basin of attraction is called a separatrix.
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Example: Consider the system

dx/dt = −(x + y)(2 + y) dy/dt = −y(1− x)

The critical points are (0, 0), (1,−1) and (1,−2).

Using the drawing of the direction field and the phase portrait below to determine
whether each critical point is stable, asymptotically stable or unstable.

Determine the basins of attraction of the asymptotically stable critical points.
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Type and stability of the critical points:
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Separatrices

Basins of attractions of the asymtoptically stable
critical points:
• the yellow area for (1,−1);
• all the rest but the separatrices for (0, 0)

8 / 14



The oscillating pendulum
The equation of motion of the oscillating pendulum represented below is

d2θ

dt2 + γ
dθ
dt

+ ω2 sin θ = 0

where
m is the mass attached to one end of a rigid but weighless rod,
L is the length of the rod,
θ, the unknown describing the motion, is the angle beween the rod and the
vertical downward direction, with counterclockwise direction taken as positive.
γ = c/mL is the damping factor (a constant),
ω2 = g/L (with mg=weight of the mass m)
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The DE
d2θ

dt2 + γ
dθ
dt

+ ω2 sin θ = 0

is nonlinear (because of sin θ).

Setting x = θ and y = dθ
dt transforms the pendulum equation into the autonomous

system of 1st order DE: 
dx
dt

= y

dy
dt

= −ω2 sin x − γy

To find the critical points of this system, one solves the system{
y = 0
−ω2 sin x − γy = 0

So: the critical points are the points (x , y) = (±nπ, 0), where n is an integer.

They corresponds to two positions along the vertical (y = 0): one below the point of
support (θ = 0, 2π, ...), the other above the point of support (θ = π, 3π, ...).

Our intuition suggests that the first is stable and the second is unstable.
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With damping (by air resistance for instance):

The critical point (0, 0) (i.e. θ = 0) is asymptotically stable : the pendulum will oscillate
back and forth with decreasing amplitude as the energy is dissipated by the damping
force. The mass will eventually reach the equilibrium position.

The same applies to the critical points (nπ, 0) with n even, which are also
asymptotically stable.
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Without damping:

The critical point (0, 0) (that is θ = 0) is stable but not asymptotically stable: there is
no dissipation and the pendulum will oscillate indefinitely with a constant amplitude.
The mass remains close to the equilibrium but will never reach it.

The same applies to the critical points (nπ, 0) with n even, which are also stable but
not asymptotically stable if there is no damping.
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The critical point (π, 0) (i.e. θ = π) is unstable, whether the pendulum is damped or
not (by air resistance): the slightest perturbation will cause the mass to fall under the
effect of gravity. The pendulum will ultimately approach the lower equilibrium position
(θ = 0).

The same applies to the critical points (nπ, 0) with n odd, which are also unstable
(with or without damping).
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Example: Undamped Pendulum with ω = 2:

Stable critical points (nπ, 0) with n even, but no asymptotically stable critical points.

Unstable critical points (nπ, 0) with n odd.

The curves connecting different saddle points are called separatrices because they
separates regions of periodic motions along closed ellipses and regions where the
motion oscillates along “cos"-like curves.
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