
Section 7.2: Almost Linear Systems

Main Topics:

Linear approximation of nonlinear systems

Perturbations of eigenvalues

The dumped oscillating pendulum.

Solving nonlinear differential systems is hard and often out of reach. One could try to
approximate, in a suitable sense, nonlinear systems by linear ones.

Such an approximation makes sense for nonlinear systems which are “not too far”
from being linear.

For them, one could also try to deduce information on the stability of critical points out
the corresponding properties for linear systems.
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Almost Linear Systems
Consider a system of differential equations

x′ = Ax + g(x)

where A is an invertible 2× 2 real matrix and g is a vector function.
If g is nonconstant then the system is nonlinear.

Assume that x = 0 is an isolated critical point of this nonlinear system. This means
that there is some circle about the origin within which there are no other critical points.
Remark: since det(A) 6= 0, then x = 0 is the only critical point (and therefore isolated)
for the linear system x′ = Ax.

Definition
Suppose that x = 0 is an isolated critical point of x′ = Ax + g(x). We say that the
system x′ = Ax + g(x) is almost linear in the neighborhood of x = 0 if

the components of g have continuous first partial derivatives, and

limx→0
‖g(x)‖
‖x‖ = 0 (i.e. ‖g(x)‖ is small in comparison to ‖x‖ near 0).

In this case, the linear system x′ = Ax is said to be an approximation of the
nonlinear system x′ = Ax + g(x) at x = 0.

Remark: By replacing x with x− x0, the notion of almost linear system extends to the
neighborhood of any isolated critical point x0 of a nonlinear system.
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Remark:

write x =

(
x
y

)
and g(x) =

(
g1(x , y)
g2(x , y)

)
.

In polar coordinates for x = r cosφ and y = r sinφ, we have

r = ‖x‖ =
√

x2 + y2 and ‖g(x)‖ =
√

g1(x , y)2 + g2(x , y)2

Hence:

lim
x→0

‖g(x)‖
‖x‖ = 0 ⇐⇒ lim

x→0

‖g(x)‖2

‖x‖2 = 0

⇐⇒ lim
r→0

g1(x , y)2 + g2(x , y)2

r 2 = 0

⇐⇒


limr→0

g1(x , y)

r
= 0

limr→0
g2(x , y)

r
= 0
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Example:
Consider the nonlinear system(

x ′

y ′

)
=

(
1 0
0 0.5

)(
x
y

)
+

(
−x2 − xy

−0.75xy − 0.25y2

)

Find the critical points of this system.

Determine if this system is almost linear in the neighborhood of the origin.

• Critical points are the solutions of
(

1 0
0 0.5

)(
x
y

)
+

(
−x2 − xy

−0.75xy − 0.25y2

)
=

(
0
0

)
,

i.e.

{
x − x2 − xy = 0
0.5y − 0.75xy − 0.25y2 = 0

i.e.

{
x(1− x − y) = 0
y(2− 3x − y) = 0 −→

{
y = 0
2− 3x − y = 0

.

Hence: {
x(1− x − y) = 0
y = 0

or

{
x(1− x − y) = 0
2− 3x − y = 0

yielding {
x = 0
y = 0

or

{
1− x − y = 0
y = 0

or

{
x = 0
2− 3x − y = 0

or

{
x + y = 1
3x + y = 2

Thus: (0, 0), (1, 0), (0, 2), (1/2, 1/2) are the critical points. All isolated (as finitely many).
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• To check if
(

x ′

y ′

)
=

(
1 0
0 0.5

)(
x
y

)
+

(
−x2 − xy

−0.75xy − 0.25y2

)
is almost linear near (0, 0):

In the notation of the definition:

g1(x , y) = −x2 − xy and g2(x , y) = −0.75xy − 0.25y2 ,

which have continuous first partial derivatives. Also,

g1(r cosφ, r sinφ) = −r2 cos2 φ− r2 cosφ sinφ

g2(r cosφ, r sinφ) = −0.75r2 cosφ sinφ− 0.25r2 sin2 φ.

Thus

lim
r→0

g1(r cosφ, r sinφ)
r

= − lim
r→0

r cosφ(1 + sinφ) = 0

lim
r→0

g2(r cosφ, r sinφ)
r

= − lim
r→0

0.25r sinφ(3 cosφ− sinφ) = 0.
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Linear approximations of nonlinear systems
Consider the nonlinear system

x′ = f(x) i.e.

{
x ′ = F (x , y)

y ′ = G(x , y)

Suppose that F and G have continuous partial derivatives up to order 2.

The matrix J =

(
Fx Fy

Gx Gy

)
is the Jacobian matrix of the system.

Suppose that (x0, y0) is a critical point of the system. If det(J(x0, y0)) 6= 0, then:

(x0, y0) is an isolated critical point, and

the system is almost linear in the neighborhood of (x0, y0).

Indeed: use Taylor expansions of F and G about the critical point (x0, y0):

F (x , y) = F (x0, y0) + Fx (x0, y0)(x − x0) + Fy (x0, y0)(y − y0) + η1(x , y)

G(x , y) = G(x0, y0) + Gx (x0, y0)(x − x0) + Gy (x0, y0)(y − y0) + η2(x , y)

where F (x0, y0) = G(x0, y0) = 0 because (x0, y0) is a critical point, and

lim
(x,y)→(x0,y0)

η1(x , y)√
(x − x0)2 + (y − y0)2

= 0 and lim
(x,y)→(x0,y0)

η2(x , y)√
(x − x0)2 + (y − y0)2

= 0 .
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This can be written as(
F (x , y)
G(x , y)

)
=

(
Fx (x0, y0) Fy (x0, y0)
Gx (x0, y0) Gy (x0, y0)

)(
x − x0
y − y0

)
+

(
η1(x , y)
η2(x , y)

)
where for x = (x , y) , x0 = (x0, y0) , r = ‖x− x0‖ ,, we have

lim
r→0

η1(x , y)
r

= 0 and lim
r→0

η2(x , y)
r

= 0 . (1)

Also,

x ′ =
dx
dt

=
d(x − x0)

dt
and y ′ =

dy
dt

=
d(y − y0)

dt
.

Thus: the system x ′ = F (x , y)

y ′ = G(x , y)
can be written as

d
dt

(
x − x0
y − y0

)
=

(
Fx (x0, y0) Fy (x0, y0)
Gx (x0, y0) Gy (x0, y0)

)(
x − x0
y − y0

)
+

(
η1(x , y)
η2(x , y)

)
By (1), this system is almost linear in the neighborhood (x0, y0) .

Its linear approximation at (x0, y0) is

d
dt

(
x − x0

y − y0

)
=

(
Fx (x0, y0) Fy (x0, y0)
Gx (x0, y0) Gy (x0, y0)

)(
x − x0

y − y0

)
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Example:
The motion of the oscillating pendulum is described by the nonlinear system of DE:

dx
dt

= y

dy
dt

= −ω2 sin x − γy

Show that this system almost linear near (0, 0) and (π, 0).
Determine the corresponding linear approximation.

• We have already verified that (0, 0) and (π, 0) are critical points of the system.
In this case, F (x , y) = y and G(x , y) = −ω2 sin x − γy .
F and G are infinitely many times differentiable with continuous partial derivatives of any order.
Thus the system is almost linear at every critical point.

• The Jacobian matrix of the system is J =

(
Fx Fy
Gx Gy

)
=

(
0 1

−ω2 cos x −γ

)
.

Linear approximation at (0, 0):

d
dt

(
x
y

)
= J(0, 0)

(
x
y

)
i.e.

(
x ′

y ′

)
=

(
0 1
−ω2 −γ

)(
x
y

)
Linear approximation at (π, 0):

d
dt

(
x − π
y − 0

)
= J(π, 0)

(
x − π
y − 0

)
i.e.

(
u′

w ′

)
=

(
0 1
ω2 −γ

)(
u
w

)
where u = x − π and w = y .
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Small perturbations: the linear case
From Chapter 3:

Consider the system of two homogeneous linear DE with constant coefficients
x′ = Ax.

If det(A) 6= 0, then x = 0 is the unique equilibrium solution (or critical point).

The stability properties of this critical point depend on the nature of the roots λ1, λ2 of
the characteristic equation det(A− λI) = 0, as in the following table:
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Suppose that the coefficients of a 2× 2-matrix B are small perturbations of the
coefficients of A.

Then x′ = Bx is a small perturbation of x′ = Ax.

Question:
What is the relation between the (critical points/their stability properties) of x′ = Bx
and the (critical points/their stability properties) of x′ = Ax?

More specifically:

If (0, 0) is the unique critical point of x′ = Ax, is (0, 0) the unique critical point of
x′ = Bx as well?

If so: can one guess the type/stability of the critical point (0, 0) of x′ = Bx out of
the type/stability of the critical point (0, 0) of x′ = Ax?
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Three remarks:

(1) Let a be a real number 6= 0 and let a′ be a real num-
ber which is a perturbation of a.
If the perturbation is sufficiently small, then a′ 6= 0.

More precisely:
� if a > 0, then a small perturbation a′ satisfies a′ > 0,
� if a < 0, then a small perturbation a′ satisfies a′ < 0.

(2) Let z be a complex number with Re z 6= 0 and let z′

be a complex number which is a perturbation of z.
If the perturbation is sufficiently small, then Re z′ 6= 0.

A similar property holds for the imaginary parts.

(3) Let z be a complex number with Re z=0 and let z′ be a com-
plex number which is a perturbation of z.
No matter how small is the perturbation, we cannot expect that
Re z′ = 0.
Similarly for the imaginary part.
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Suppose that the coefficients of a 2× 2-matrix B are small perturbations of the
coefficients of A.

Then:

det(B) is a small perturbation of det(A). So, det(B) 6= 0 if det(A) 6= 0.

The coefficients of the characteristic equation det(B− λI) = 0 are also small
perturbations of those of det(A− λI) = 0.

The eigenvalues λ′
1, λ

′
2 of B are hence small perturbations of the eigenvalues

λ1, λ2 of A.

Recall that det(A− λI) = 0 is a quadratic equation.
Let ∆ be its discriminant.

. Suppose ∆ 6= 0. Then

either ∆ > 0 (distinct real roots λ1, λ2)

or ∆ < 0 (complex conjugate roots λ2 = λ1).

∆′ (the discriminant of the characteristic equation of B) is a perturbation of ∆.
If the perturbation is small enough, we will have

∆ > 0⇒ ∆′ > 0 and ∆ < 0⇒ ∆′ < 0 .
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. Suppose ∆ > 0 (so ∆′ > 0 too).

The roots of λ2 + αλ+ β = 0 are
−α±

√
∆

2
.

Then, for instance:

λ1 < λ2 < 0 means that the biggest root is negative, i.e. −α +
√

∆ < 0.
For small enough perturbations, we can obtain the same relations for B, i.e.
λ′

1 < λ′
2 < 0.

This gives:
If the critical point 0 is a node and asymptotically stable for x′ = Ax, the same is true
for x′ = Bx.

. A similar argument works for all cases for λ1, λ2 in previous table where one has
conditions given by strict inequalities.

. The sensitive cases are those where there are equality conditions:

λ1 = λ2 real (proper or improper node)

λ1 = iν (i.e. complex case µ± iν with ν = 0)
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Perturbation of λ1 = iν and λ2 = −iν

Before perturbation, the critical point x = 0 is a center and it is stable.

After perturbation, the critical point x = 0:

remains a center and is stable if µ′ = 0,

becomes a spiral point and is unstable if µ′ > 0,

becomes a spiral point and is asymptotically stable if µ′ < 0.
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Perturbation of λ1 = λ2

Before perturbation, the critical point x = 0 is a node.
It is unstable if λ1 = λ2 > 0, and asymptotically stable is λ1 = λ2 < 0.

Suppose for instance λ1 = λ2 > 0:

After perturbation, the critical point:

remains a node and is unstable if λ′
2 > λ′

1 > 0,

becomes a spiral point and is unstable if λ′
1 and λ′

2 are complex conjugate (and
µ > 0, since λ1 = λ2 > 0).
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Small perturbations: almost linear systems

Theorem (Theorem 7.2.2)
Let λ1 and λ2 be the eigenvalues of the linear system x′ = Ax, corresponding to the
almost linear system x′ = Ax + g(x). Suppose x = 0 is an isolated critical point of
both systems. Then its type and stability are as follows:

Remark: as in the linear case, small perturbations do not alter the type and the
stability of the critical point except for the two sensitive cases.
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Remark: the previous analysis considers the case where the system is almost linear
near an isolated critical point x = 0. It extends in the same way at every other isolated
critical point x = x0 near which the system is almost linear.

Example:
The linear approximation of the system for the motion of the damped oscillating
pendulum at (π, 0) is

d
dt

(
u
w

)
=

(
0 1
ω2 −γ

)(
u
w

)
where u = x − π, w = y and γ > 0

Its characteristic equation is

det
(
−λ 1
ω2 −γ − λ

)
= λ2 − γλ− ω2 = 0 .

So the eigenvalues are

λ1, λ2 =
γ ±

√
γ2 + 4ω2

2
.

They are both real: one is positive, the other one is negative.
Thus (π, 0) is a saddle point and is unstable for both the linear approximation and the
almost linear system.
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The linear approximation of the system for the motion of the damped oscillating
pendulum at (0, 0) is

d
dt

(
x
y

)
=

(
0 1
−ω2 −γ

)(
x
y

)
(with γ > 0)

Its characteristic equation is

det
(
−λ 1
−ω2 −γ − λ

)
= λ2 + γλ+ ω2 = 0 .

So the eigenvalues are

λ1, λ2 =
−γ ±

√
γ2 − 4ω2

2
.

The nature of the critical point (0, 0) depends on the sign of ∆ = γ2 − 4ω2:

∆ > 0: in this case λ1 < λ2 < 0: node and asymptotically stable critical point for
both the linear approximation and the almost linear system.

∆ = 0: in this case λ1 = λ2 < 0: (0, 0) is an asymptotically stable node for the
linear approximation; for the pendulum, it can can be either an asymptotically
stable node or an asymptotically stable spiral point.

∆ < 0: in this case λ1, λ2 are complex conjugates with negative real part µ:
asymptotically stable spiral point for the linear approximation and pendulum.
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