
Graphical Methods – for linear systems:
Sections 3.2, 3.3, 3.4, 3.5

Main topics:

Component plots

Autonomous systems (here linear systems only):
� trajectories (or orbits)
� equilibrium solutions
� direction fields
� phase portraits.

For homogenous linear systems with constant coeffcient: x′ = Ax:
phase portraits and stability, according to the nature of the eigenvalues of A.
Classification of the equilibrium solutions.

The case of non-homogenous systems x′ = Ax + b with A invertible.
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Plotting solutions
Definition

Let x(t) =
(

x1(t)
x2(t)

)
be a solution of the IVP

x′(t) = P(t)x(t) + g(t) with initial condition x0 =

(
x0

y0

)
.

The graphs of the two functions x1 = x1(t) and x2 = x2(t) versus t are called
component plots of the solution x(t).

Plus: the component plot displays the dependence on t of a specific solution pair
x = x(t) and y = y(t) (in particular their behaviour for very large t).

Minus: a new plot is needed if we change the initial conditions (and hence we change
the solution).

More effective representations for autonomous systems (see next slide):

trajectories (or orbits)

direction fields

phase portraits
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Autonomous systems of two linear 1st order DE’s

Definition
A system of two linear DE’s x′ = P(t)x + g(t) is autonomous if P and g are constant
in t , i.e. it is of the form

x′ = Ax + b

where:

A is a 2× 2 matrix with real coefficients

b is a 2× 1 column vector with real coefficients.

Remarks:

In Chapter 1, a first-order DE was said to be autonomous if of the form
dy
dt

= f (y), where f is constant in t .

For a linear DE, this means that
dy
dt

= αy + β, where α, β are real numbers.

In Section 3.6, we will give the general definition of autonomous systems of first
order DE.
For linear systems, “autonomous” just means “with constant coefficients”.
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Consider the autonomous (=constant coefficient) system of two 1st order linear DE’s:

x′ = Ax + b where x(t) =
(

x1(t)
x2(t)

)
.

x is called the state vector.

x1 and x2 are called the state variables.

Example:

One can check that x(t) = e−t
(

1
−2

)
is a solution of x′ = Ax where A =

(
1 1
4 1

)
.

Hence x1(t) = e−t and x2(t) = −2e−t .
Component plots of the solution:
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The x1x2-plane is called the phase plane (or state plane).

Let x1 = x1(t), x2 = x2(t) be a solution. The curve t 7→ (x1(t), x2(t)) in the phase
plane is a trajectory (or orbit).

Example (continued):

For x(t) =
(

x1(t)
x2(t)

)
= e−t

(
1
−2

)
=

(
e−t

−2e−t

)
:

We elimitate the t-variable:
x2

x1
=
−2e−t

e−t = −2 and get x2 = −2x1 (a line) .

The trajectory lies on this line, but it is not the entire line.

Since

limt→−∞ e−t = +∞ and limt→+∞ e−t = 0

it is the violet half-line in the x1x2-plane
(i.e. the phase plane)

Remark: this method allows us to draw the trajectory

of any solution of the form eλt
(

v1

v2

)
.
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A direction field is an array of vectors in the phase space: a vector parallel to

Ax+b is drawn with its tail at x =

(
x1

x2

)
for every choice of (x1, x2) in a fixed grid.

The lenght of the vectors is often chosen to be constant.

For readability, on a dense grid, one often draws a segment instead of a vector.

If a trajectory passes through a point (x1, x2) of the grid, then its tangent vector
at (x1, x2) is a (multiple of a) vector of the direction field. Conversely, we can use
a direction field to “guess" trajectories.

Example:


dx1

dt
= x1 + x2 + 1

dx2

dt
= 4x1 + x2

with A =

(
1 1
4 1

)
and b =

(
1
0

)

At the point (x1, x2) we draw a small vec-
tor (often just a segment on a dense grid)
of slope 4x1+x2

x1+x2+1 with same direction as
(x ′1, x

′
2) = (x1 + x2 + 1, 4x1 + x2).

e.g. at the point (2, 3) we draw a small
segment of slope 4·2+3

2+3+1 = 11
6 , directed as

(6, 11).
Direction field in the phase plane x1x2
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An equilibrium point is a solution for which
dx
dt

= 0, i.e. Ax + b = 0.

Equilibrium solutions are also called equilibrium solutions or critical points.

. If the matrix A is non singular (i.e. det(A) 6= 0), there is a unique equilibrium
solution given by x = −A−1b. The equilibrium solution is a point xeq in the phase
plane.

. If the matrix A is singular (i.e. det(A) = 0), there is either infinitely many
equilibrium solutions or no equilibrium solution at all.

(The second possibility –no solutions – may happen only is the system is
nonhomogenous. A homogenous system always admits the zero solution)

Example:


dx1

dt
= x1 + x2 + 1

dx2

dt
= 4x1 + x2

with A =

(
1 1
4 1

)
and b =

(
1
0

)

det(A) 6= 0. Unique equilibrium point = solution of

{
x1 + x2 + 1 = 0
4x1 + x2 = 0

, i.e. xeq =

(
1/3
−4/3

)
.

Example:


dx1

dt
= x1 + 1

dx2

dt
= 4x1

with A =

(
1 0
4 0

)
and b =

(
1
0

)

det(A) = 0 and the system

{
x1 + 1 = 0
4x1 = 0

has no solution. There are no equilibrium solutions.
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A phase portrait is the plot a of representative sample of trajectories, including
the equilibrium points, in the phase plane.

Example:
dx1

dt
= x1 + x2 + 1

dx2

dt
= 4x1 + x2

with A =

(
1 1
4 1

)
and b =

(
1
0

)

The phase plane x1x2.

Equilibrium solution xeq =

(
1/3
−4/3

)
Trajectory for x1(t) =

(
e−t + 1/3
−2e−t − 4/3

)
(with limt→+∞ x1(t) = xeq)
A third trajectory in red.
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Example (continued):

Phase portrait with the direction field, Xeq, and a few trajectories
for the same example:


dx1

dt
= x1 + x2 + 1

dx2

dt
= 4x1 + x2

with A =

(
1 1
4 1

)
and b =

(
1
0

)
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Phase portraits and stability for homogeneous
systems x′ = Ax (constant coefficient matrix A)

We shall suppose in the following that A is not the zero matrix.

The form of the general solution of x′ = Ax depends on the properties (real, complex,
distinct, nonzero...) of the eigenvalues λ1, λ2 of A.

Likewise, the stability properties of the solutions of x′ = Ax depend on λ1, λ2 of A.

Equilibrium points
For equilibrium (or critical) points xeq (=solutions of Ax = 0), there are two main
cases:

Both λ1, λ2 are non-zero, i.e. det(A) 6= 0. Then xeq =

(
0
0

)
is the unique

equilibrium point.

One of λ1, λ2 is zero, i.e. det(A) = 0, then there is one straight line of equilibrium
points xeq.
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When det(A) 6= 0 the unique equilibrium point xeq =

(
0
0

)
is classified into different

types and stability properties:

The precise definitions of these terms will be given in Section 7.1.

The geometry of the trajectories in the phase plane we are going to describe in the
following explain their basic meaning.
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I. A with real, distinct, nonzero eigenvalues λ1, λ2 ∈ R, λ1 6= λ2

The general solution of x′ = Ax is

x(t) = C1eλ1tv1 + C2eλ2tv2 C1,C2 ∈ R
where:

• v1 =

(
v11

v21

)
is an eigenvector of A of eigenvalue λ1

• v2 =

(
v12

v22

)
is an eigenvector of A of eigenvalue λ2

(Recall that v1 and v1 are linearly independent because λ1 6= λ2).

Example 1:

Consider the system of two linear DE’s x′ = Ax, where A =

(
0 1
−6 −5

)
.

Its general solution is x(t) = C1e−3t
(

1
−3

)
+ C2e−2t

(
1
−2

)
Determine the equilibrium point xeq of the system. [xeq =

(
0
0

)
because det(A) 6= 0.]

Compute limt→+∞ x(t). [The limit is xeq =

(
0
0

)
because limt→∞ e−at = 0 if a > 0.]

Show that, if C2 6= 0, then

x(t) ∼t→+∞ C2e−2t
(

1
−2

)
.
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[Answer: If C2 6= 0, then

x(t)=C1e−3t
(

1
−3

)
+ C2e−2t

(
1
−2

)
=e−2t

[
C1e−t

(
1
−3

)
+ C2

(
1
−2

)]
∼t→+∞C2e−2t

(
1
−2

)

Show that, if C1 6= 0, then

x(t) ∼t→−∞ C1e−3t
(

1
−3

)
.

[Answer: If C1 6= 0, then x(t) = e−3t
[
C1

(
1
−3

)
+ C2et

(
1
−2

)]
∼t→−∞C1e−3t

(
1
−3

)

Interpretation:

The trajectories of the solutions which are not parallel to

e−3t
(

1
−3

)
(i.e. if C2 6= 0) move towards xeq for t →

+∞ along directions parallel to
(

1
−2

)
The trajectories of the solutions which are not parallel

to
(

1
−2

)
(i.e. if C1 6= 0) arrive from t → −∞ along

directions parallel to
(

1
−3

)
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. λ1 6= λ2 and both negative, WLOG λ1 < λ2 < 0:

Then limt→+∞ x(t) =
(

0
0

)
= xeq, i.e. all trajectories approach xeq asymptotically as

t → +∞: we say that xeq is asymptotically stable and we call it a nodal sink.

If C2 6= 0, then x(t) = eλ2t
(

C1e(λ1−λ2)t v1 + C2v2

)
∼t→+∞ C2eλ2t v2 = C2x2(t)

i.e. all solutions with C2 6= 0 approach xeq along the di-
rection of C2v2 (=the eigenvector with eigenvalue closest
to 0).

If C1 6= 0, then x(t) = eλ1t
(

C1v1 + C2e(λ2−λ1)t v2

)
∼t→−∞ C1eλ1t v1 = C1x1(t)

i.e. all solutions with C1 6= 0 backward in time approach
the direction of C1v1.
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. λ1 6= λ2 and both positive, WLOG λ1 > λ2 > 0:

Then all solutions diverge from xeq for t → +∞ and limt→−∞ x(t) = xeq, i.e. all
trajectories approach xeq backward in time t → −∞: we say that xeq is unstable and
we call it a nodal source.

If C2 6= 0, then x(t) = eλ2t
(

C1e(λ1−λ2)tv1 + C2v2

)
∼t→−∞ C2eλ2tv2 = C2x2(t)

i.e. backward in time all solutions with C2 6= 0 approach xeq along the direction of C2v2

(=the eigenvector with eigenvalue closest to 0).

If C1 6= 0, then x(t) = eλ1t
(

C1v1 + C2e(λ2−λ1)tv2

)
∼t→+∞ C1eλ1tv1 = C1x1(t)

i.e. all solutions with C1 6= 0 move for t →∞ asymptotically to a line of direction C1v1.

(Picture as in the previous case “with arrows reversed”)
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. λ1 6= λ2 of opposite sign, WLOG λ2 < 0 < λ1:
In this case there are solutions that tend to xeq for t → +∞, but most of the solutions
(those for C1 6= 0) grows to infinity: indeed, if C1 = 0, then

lim
t→+∞

C2eλ2tv2 = xeq

and if C1 6= 0, then

x(t) = C1eλ1tv1 + C2eλ2tv2 ∼t→+∞ C1eλ1tv1

grow to infinity in the direction of C1v1. We say that xeq is unstable and we call it a
saddle point.
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II. A with real, distinct eigenvalues and λ1 = 0
The general solution is x(t) = C1x1(t) + C2x2(t) = C1v1 + C2eλ2tv2

Each eigenvector v of eigenvalue λ1 = 0 is of the form C1v1 and satisfies Av = 0. So
we have a line ` of critical points xeq.

. λ1 = 0 and λ2 < 0
The trajectories x(t) = C1v1 + C2eλ2tv2

passing through points not in ` (i.e. with
C2 6= 0) move along half lines parallel to
C2v2 and asymptotically tend to the point
on ` given by limt→+∞ x(t) = C1v1 .

. λ1 = 0 and λ2 > 0

The situation is as above, with direction of
the trajectories not passing though the crit-
ical line reversed since

lim
t→−∞

x(t) = C1v1 .

i.e. the trajectories passing through points which are not on ` tend to points on `
backward in time and diverge to infinity for t → +∞.
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Summary of cases I. and II.

18 / 27



III. A with complex conjugate eigenvalues and λ2 = λ1 6= 0

Write:

λ instead of λ1.
Set λ = µ+ iν with µ, ν ∈ R.

v for a fixed eigenvector of A for the eigenvalue λ.
Set v = a + ib with a,b real vectors.

General solution of x′ = Ax:

x(t) = C1 Re x1(t) + C2 Im x1(t)

where
x1(t) = e(µ+iν)tv

Explicit computations bring the set of fundamental solutions in the form:

Re x1(t) = eµt [cos(νt)a− sin(νt)b]
Im x1(t) = eµt [cos(νt)b + sin(νt)a] .
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Since det(A) = λλ 6= 0

xeq =

(
0
0

)
is the unique equilibrium (or critical) point.

The solutions

Re x1(t) = eµt [cos(νt)a− sin(νt)b]
Im x1(t) = eµt [cos(νt)b + sin(νt)a] .

have an oscillatory behavior as functions of t .
The nature of the oscillation depends on µ = Reλ.
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Example:

In section 3.5 we found that x′ = Ax, where A =

(
0 1
−1 0

)
, has general solution

x(t) = C1

(
cos t
− sin t

)
+ C2

(
sin t
cos t

)
where C1,C2 are constants and t ∈ R. Remark: periodic of period 2π.

Find the solution of the IVP for x′ = Ax with initial condition x(0) =
(

1
2

)
.

The solution of the IVP is x(t) =
(

x1(t)
x2(t)

)
, where

x1(t) = cos t + 2 sin t =
√

5 cos(θ − t)
x2(t) = − sin t + 2 cos t =

√
5 sin(θ − t)

and θ is chosen so that cos θ = 1√
5
, sin θ = 2√

5

Component plots.

The trajectory of the solution in the
phase plane lies on the circle x2

1 +

x2
2 = 5.
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Back to the general case, with set of fundamental solutions:

Re x1(t) = eµt [cos(νt)a− sin(νt)b]
Im x1(t) = eµt [cos(νt)b + sin(νt)a] .

µ = 0, i.e. λ = iν: [see previous example, where λ = i ]

Re x1 and Im x1 are periodic function of t of period T = 2π
ν

.
In the phase plane:
The trajectories are ellipses.
The origin (0, 0) is a called a center and it is said to be stable.

µ < 0:

The amplitude of the oscillations of Re x1 and Im x1 decays exponentially as t → +∞.
In the phase plane:
The trajectories spiral around (0, 0) and approach (0, 0) at t → +∞.
The origin (0, 0) is a called a spiral sink and it is said to be asymptotically stable.

µ > 0:

The amplitude of the oscillations of Re x1 and Im x1 grows exponentially as t → +∞.
In the phase plane:
The trajectories spiral out of (0, 0) as t increases.
The origin (0, 0) is a called a spiral source and it is said to be unstable.
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Summary of case III.
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IV. A with two repeated real eigenvalues equal to λ

λ 6= 0 because A 6= 0. So det(A) = λ2 6= 0.

Thus x′ = Ax has a unique equilibrium solution xeq =

(
0
0

)
.

Recall that two cases have to be distinguished:

A =

(
λ 0
0 λ

)
is a diagonal matrix.

A is not a diagonal matrix.

We will not treat in details the case where A is not diagonal.

If A =

(
λ 0
0 λ

)
:

then v1 =

(
1
0

)
and v2 =

(
0
1

)
are two linearly indep. eigenvectors with eigenvalue λ.

The general solution is x(t) = C1eλt
(

1
0

)
+ C2eλt

(
0
1

)
= eλt

(
C1

C2

)
In the phase space, the trajectory of every solution is a half-line with endpoint 0.
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Example: [λ = −1]

Let A =

(
−1 0
0 −1

)
. Find the solution of the IVP: x′ = Ax with x(0) =

(
1
2

)
.

As above, the general solution is x(t) = e−t
(

C1

C2

)
.

Determine the value of C1,C2 from the initial condition:
(

1
2

)
= x(0) =

(
C1

C2

)
.

The solution is hence x(t) =
(

x1(t)
x2(t)

)
= e−t

(
1
2

)
.

Notice that limt→+∞ x(t) =
(

0
0

)
.

Since
x2

x1
=

e−t2
e−t = 2, the trajectory lies on

the straight-line x2 = 2x1.

Since x1(t) = e−t > 0, the trajectory de-
scribes the red half-line in the picture, from
∞ towards (0, 0).
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Summary of case IV
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The case of non-homogenous systems x′ = Ax + b

x′ = A(x− v) where


x = x(t) is the unknown matrix function
A is a constant matrix
v is a constant vector

Solution method: [Example on handout]

Set y(t) = x(t)− v. Then y satisfies y′ = Ay.
Solve y′ = Ay for the general solution y(t) = C1y1(t) + C1y2(t) with C1,C2 constants.
Then x(t) = y(t) + v is the solution of the initial system.

x′ = Ax + b where


x = x(t) is the unknown matrix function
A is a constant matrix with det A 6= 0
b is a constant vector

Solution method: [Example on handout]

Solve Ax + b = 0. The solution is xeq. Hence Axeq + b = 0, i.e. b = −Axeq.
Substitute in the system, which becomes x′ = A(x− xeq).
Solve as before.

Conclusion: translation of xeq to (0, 0) reduces the analysis (solutions and stability) of
x′ = Ax + b to that of a homogenous system, as before in this section.
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