Graphical Methods — for linear systems:
Sections 3.2, 3.3, 3.4, 3.5

Main topics:
o Component plots

o Autonomous systems (here linear systems only):
o trajectories (or orbits)
o equilibrium solutions
¢ direction fields
o phase portraits.

e For homogenous linear systems with constant coeffcient: x’ = Ax:
phase portraits and stability, according to the nature of the eigenvalues of A.
Classification of the equilibrium solutions.

e The case of non-homogenous systems x’ = Ax + b with A invertible.
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Plotting solutions
Definition
Let x(t) = <§;Eg) be a solution of the IVP

Yo

The graphs of the two functions x; = x(t) and x> = x»(t) versus t are called
component plots of the solution x(t).

X'(1) = P(t)x(t) + () with initial condition xo = <X°) ,
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Plotting solutions
Definition

Let x(t) = <§;Eg) be a solution of the IVP

X'(t) = P(t)x(t) +g(t) with initial condition xo = (;2) .

The graphs of the two functions x; = x(t) and x> = x»(t) versus t are called
component plots of the solution x(t).

Plus: the component plot displays the dependence on t of a specific solution pair
x = x(t) and y = y(t) (in particular their behaviour for very large t).

Minus: a new plot is needed if we change the initial conditions (and hence we change
the solution).
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Plotting solutions
Definition

Let x(t) = <§;§g) be a solution of the IVP

X'(t) = P(t)x(t) +g(t) with initial condition xo = (;2) .

The graphs of the two functions x; = x(t) and x> = x»(t) versus t are called
component plots of the solution x(t).

Plus: the component plot displays the dependence on t of a specific solution pair
x = x(t) and y = y(t) (in particular their behaviour for very large t).

Minus: a new plot is needed if we change the initial conditions (and hence we change
the solution).

More effective representations for autonomous systems (see next slide):
@ trajectories (or orbits)
@ direction fields
@ phase portraits
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Autonomous systems of two linear 1st order DE’s
Definition

A system of two linear DE’s X’ = P(t)x + g(t) is autonomous if P and g are constant
in t, i.e. it is of the form

x' =Ax+b
where:

@ Ais a2 x 2 matrix with real coefficients

@ bis a2 x 1 column vector with real coefficients.
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Autonomous systems of two linear 1st order DE’s

Definition

A system of two linear DE’s X’ = P(t)x + g(t) is autonomous if P and g are constant
in t, i.e. it is of the form

xX =Ax+b
where:
@ Ais a2 x 2 matrix with real coefficients
@ bis a2 x 1 column vector with real coefficients.

Remarks:

o In Chapter 1, a first-order DE was said to be autonomous if of the form

Z}t/ = f(y), where f is constant in .
For a linear DE, this means that Z}; = ay + B, where «, § are real numbers.

o In Section 3.6, we will give the general definition of autonomous systems of first
order DE.

For linear systems, “autonomous” just means “with constant coefficients”.




Consider the autonomous (=constant coefficient) system of two 1st order linear DE’s:

X1 (t)
x' = Ax+b where x(t)= .
* = (als)
o X is called the state vector.
e x1 and x» are called the state variables.

Example:

One can check that x(t) = ™! (_12
Hence x1(t) = e~' and x(t) = —2e

Component plots of the solution:

) is a solution of X’ = AX where A = (1 1).

—t
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o The x1xo-plane is called the phase plane (or state plane).

o Let x1 = x¢(t), X2 = x2(t) be a solution. The curve t — (x¢(t), x2(t)) in the phase
plane is a trajectory (or orbit).

Example (continued):

- Gl () ()

We elimitate the t-variable: Ty
x> —2e! .

—= = = — n Xo = —2x; (aline).

X o andget x 1 ( ) i
The trajectory lies on this line, but it is not the entire line. b

Since

M —co € '=+400 and liMisie0e =0

it is the violet half-line in the xy x2-plane
(i.e. the phase plane) 4

Remark: this method allows us to draw the trajectory 3

of any solution of the form e*! (5‘
2




o A direction field is an array of vectors in the phase space: a vector parallel to
Ax + b is drawn with its tail at x = (2) for every choice of (x, x2) in a fixed grid.
The lenght of the vectors is often chosen to be constant.

o For readability, on a dense grid, one often draws a segment instead of a vector.

o If atrajectory passes through a point (x1, x2) of the grid, then its tangent vector
at (x4, x2) is a (multiple of a) vector of the direction field. Conversely, we can use
a direction field to “guess" trajectories.

dxy

— = Xi —+ Xo —+ 1 1
Example: dt with A=

dX2 4

o St

At the point (x1, x2) we draw a small vec-

tor (often just a segment on a dense grid)
4x1+X: . . .

of slope ;=5=% with same direction as

(x1,%5) = (X1 + x2 +1,4x1 + x2).

e.g. at the point (2,3) we draw a small

segment of slope %22 — 11 directed as
(6,11).

24+3+1 6’
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o An equilibrium point is a solution for which % =0,i.e. Ax+b=0.

Equilibrium solutions are also called equilibrium solutions or critical points.

> If the matrix A is non singular (i.e. det(A) # 0), there is a unique equilibrium
solution given by x = —A~"'b. The equilibrium solution is a point Xq in the phase
plane.

> If the matrix A is singular (i.e. det(A) = 0), there is either infinitely many
equilibrium solutions or no equilibrium solution at all.

(The second possibility —no solutions — may happen only is the system is
nonhomogenous. A homogenous system always admits the zero solution)
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o An equilibrium point is a solution for which % =0,i.e. Ax+b=0.

Equilibrium solutions are also called equilibrium solutions or critical points.

> If the matrix A is non singular (i.e. det(A) # 0), there is a unique equilibrium
solution given by x = —A~"'b. The equilibrium solution is a point Xq in the phase
plane.

> If the matrix A is singular (i.e. det(A) = 0), there is either infinitely many
equilibrium solutions or no equilibrium solution at all.

(The second possibility —no solutions — may happen only is the system is
nonhomogenous. A homogenous system always admits the zero solution)

dX1
g =ttt 11 1
Example: o with A:(4 1) and b:(o)
E:4X1+X2

1=0
det(A) # 0. Unique equilibrium point = solution of {:1(1(1++X§(2+_ o 0 e Xeq = <_1‘(?3)
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o An equilibrium point is a solution for which % =0,i.e. Ax+b=0.

Equilibrium solutions are also called equilibrium solutions or critical points.
> If the matrix A is non singular (i.e. det(A) # 0), there is a unique equilibrium

solution given by x = —A~"'b. The equilibrium solution is a point Xq in the phase
plane.

> If the matrix A is singular (i.e. det(A) = 0), there is either infinitely many
equilibrium solutions or no equilibrium solution at all.

(The second possibility —no solutions — may happen only is the system is
nonhomogenous. A homogenous system always admits the zero solution)

dX1
g =ttt 11 1
Example: e e ix with A= (4 1) and b= (O)
g~ atx
_ . . 1= .
det(A) # 0. Unique equilibrium point = solution of {:1(1(1++Xf(2+_ o 0 L8 Xeq = <_1‘(?3)
dx-
Example: R wih  A=(! %) and b= (]
PIE< 9 dx, V) =\o
—= = 4x
x1+1=0 . e .
det(A) = 0 and the system dxi — 0 has no solution. There are no equilibrium solutions.
1=
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o A phase portrait is the plot a of representative sample of trajectories, including

the equilibrium points, in the phase plane.

Example:
dM
o Sttt 11 1
%74)( L with A:(4 1) and b:(o)
g atx
4 XZ
3
2
1
) Xy
-3 -2 -1 ] 1 2 3 4 5
-1
Kpa The phase plane x; X,.
. . [ 1/3
5 Equilibrium solution xeq = (74/3)
X1

—t
Trajectory for x4 (t) = (—Ze:fj {53)

(with lim— 00 X1 (1) = Xeq)
A third trajectory in red.
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Example (continued)

Phase portrait with the direction field, Xeq, and a few trajectories

for the same example

=X1+x+1
= 4X1 + X2

o
dt

o
fols
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Phase portraits and stability for homogeneous
systems X’ = Ax (constant coefficient matrix A)

We shall suppose in the following that A is not the zero matrix.
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Phase portraits and stability for homogeneous
systems X’ = Ax (constant coefficient matrix A)

We shall suppose in the following that A is not the zero matrix.
The form of the general solution of X’ = Ax depends on the properties (real, complex,

distinct, nonzero...) of the eigenvalues A1, A2 of A.
Likewise, the stability properties of the solutions of X’ = Ax depend on A1, A2 of A.
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Phase portraits and stability for homogeneous
systems X’ = Ax (constant coefficient matrix A)

We shall suppose in the following that A is not the zero matrix.

The form of the general solution of X’ = Ax depends on the properties (real, complex,
distinct, nonzero...) of the eigenvalues A1, A2 of A.

Likewise, the stability properties of the solutions of X’ = Ax depend on A1, A2 of A.

Equilibrium points
For equilibrium (or critical) points Xeq (=solutions of Ax = 0), there are two main
cases:

e Both A, X2 are non-zero, i.e. det(A) # 0. Then Xeq = (0

0) is the unique

equilibrium point.

o One of A1, Az is zero, i.e. det(A) = 0, then there is one straight line of equilibrium
points Xegq.
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When det(A) # 0 the unique equilibrium point Xeq = <0

0) is classified into different

types and stability properties:

EEEEN
TABLE 3.5.2 Stability properties of linear systems x’ = Ax with det(A — AI) = 0 and det A # 0.
dt(M) #0 © 230.%+0  Rioenvalues 47 Type of Critical Point Stability
st and. devbumet {A, >h>0 quat. g Node Unstable
’ A <M <0 Node Asymptotically stable
Ay <0 <)y Joyesi 3% Saddle point Unstable
ol amd. coimeisiunt { AM=0>0 Proper or improper node Unstable
fmetie A =M<0 Proper or improper node Asymptotically stable
Complice. eomjugobe M, y=pxiv Spiral point
vl u>0 A Unstable
u<0 / purely dmagimony Asymptotically stable
M=iv,p=—iv Center Stable

J.BRENNAN 3 w,BOYCE, DIFFERENTIAL EQUATIONS, WILEY

The precise definitions of these terms will be given in Section 7.1.

The geometry of the trajectories in the phase plane we are going to describe in the
following explain their basic meaning.



I. A with real, distinct, nonzero eigenvalues )\, \> € R, \{ # Ao
The general solution of x' = Ax is
x(t) = CreM'vy + Coe™'vy Ci,C€R
where:
o V= (21) is an eigenvector of A of eigenvalue X

V4 . . .
o Vo= (v12> is an eigenvector of A of eigenvalue A,
22

(Recall that vy and vy are linearly independent because Ay # ).



I. A with real, distinct, nonzero eigenvalues )\, \> € R, \{ # Ao

The general solution of x' = Ax is
X(t) = C1 e*1'v1 + CgeA21V2 C1, Cz cR

where:
o V= (5”) is an eigenvector of A of eigenvalue A

21
o V= (:12> is an eigenvector of A of eigenvalue A,

22
(Recall that vy and vy are linearly independent because Ay # ).
Example 1:

0 1

Consider the system of two linear DE’s X’ = Ax, where A = 6 -5

Its general solution is x(t) = C1e~3! (_13) + Coe™2 (_12)
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I. A with real, distinct, nonzero eigenvalues )\, \> € R, \{ # Ao

The general solution of x' = Ax is

x(t) = CieM'vy + Cre™?'v, Ci,C€R
where:
o V= (21) is an eigenvector of A of eigenvalue X

V4 . . .
o Vo= (v12> is an eigenvector of A of eigenvalue A,
22

(Recall that vy and vy are linearly independent because Ay # ).
Example 1:

0 1

Consider the system of two linear DE’s X’ = Ax, where A = 6 -5

Its general solution is x(t) = C1e~3! (_13) + Coe™2 (_12)

o Determine the equilibrium point Xeq of the system.
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I. A with real, distinct, nonzero eigenvalues )\, \> € R, \{ # Ao
The general solution of x' = Ax is
x(t) = CreM'vy + Coe™'vy Ci,C€R
where:
o V= (21) is an eigenvector of A of eigenvalue X

V4 . . .
o Vo= (v12> is an eigenvector of A of eigenvalue A,
22

(Recall that vy and vy are linearly independent because Ay # ).

Example 1:
Consider the system of two linear DE’s X’ = Ax, where A = 86 —15
Its general solution is x(t) = Cye—3! (_13) + Coe~ 2 (_12)
o Determine the equilibrium point Xeq of the system. [Xeq = (8) because det(A) # 0.]

o Compute lim;_ 4o X(t).



I. A with real, distinct, nonzero eigenvalues )\, \> € R, \{ # Ao

The general solution of x' = Ax is

X(t) = C1 e*1'v1 + CgeA21V2 C1, Cz cR

where:
Vit . .

e V= (vﬂ) is an eigenvector of A of eigenvalue A4
21

V4 . . .
o Vo= (v12> is an eigenvector of A of eigenvalue A,
22

(Recall that vy and vy are linearly independent because Ay # ).

Example 1:

Consider the system of two linear DE’s X’ = Ax, where A = 96 JS

Its general solution is x(t) = C1e~3! (_13) + Coe™2 (_12)
o Determine the equilibrium point Xeq of the system. [Xeq = (8) because det(A) # 0.]
o Compute lim;_, ;oo X(1). [The limit is Xeq = <8> because lim;_, ., e~ =0if a > 0.]

@ Show that, if C, # 0, then
_ 1
X(1) ~isioo Coe (_2) .
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[Answer: If Co # 0, then

x(t)=Cie™™ (_13> + Coe™? (

1

e o () (1) e (1)

o Show that, if Ci # 0, then

X(f) ~ow Cre® ( 1

).



[Answer: If Co # 0, then

9

1

2) } N too Co87 2! (

e {01 e! (_13> + Co <_1

2

1

3> + C26'72t <

1

C1973t<
o Show that, if Ci # 0, then

x(t)

5)

2) e G (—1

1
3> + Cze[ (7
Interpretation:

1

e 3t [01 (

[Answer: If Cy # 0, then x(t)

3) (i.e. if Co # 0) move towards Xeq for t —

1

The trajectories of the solutions which are not parallel to

)

The trajectories of the solutions which are not parallel

o (

1

+o00 along directions parallel to (

2

1

2) (i.e. if Cy # 0) arrive from t — —oo along

1

\\\\\\\\\ AN\
lllllllllllllll =N\
llllllllll e————~8\\\ /
\\\\\\\\\\\\\\ D AWZ
\\\\\\\\\\ ——=~\ Y~

directions parallel to (

Ly e
———— = — R
PrEEE—————r o ——5——
e I\ ———————— — — —

/Y1 =L /N —— e ——— —

=2 [ N~——

)
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> A1 # A2 and both negative, WLOG A\ < X; < O:

Then lim;_ 10 X(t) = = Xeq, i.€. all trajectories approach Xeq asymptotically as

0
0
t — +o0: we say that Xeq is asymptotically stable and we call it a nodal sink.
If Co # 0, then x(t) = eAZ’(C1 eM =22ty Cng) »

~istoo o8 = CoXo(t)

i.e. all solutions with C, # 0 approach Xeq along the di-
rection of C,v» (=the eigenvector with eigenvalue closest
to 0).

If Cy #0,then x(t) = eA1’(C1v1 + Cge(AZ‘Mtvz)

~is—oo  CreMig = Cixy(t)

7 BRENNRN ok al. , DIFFERENTIAL eQUATIONS, FIGURE 33,2
i.e. all solutions with C; # 0 backward in time approach
the direction of Cyv;.
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> A1 # A2 and both positive, WLOG )\ > )\, > 0:
Then all solutions diverge from Xeq for t — +o00 and lim;_, . X(t) = Xeq, i.€. all

trajectories approach Xeq backward in time t — —oo: we say that xeq is unstable and
we call it a nodal source.

If Co ;é 0, then X(t) = eAzt(G e()\17>\2)tV1 + CQVQ) Nt 0o CzekthQ = Cng(t)

i.e. backward in time all solutions with C> # 0 approach Xeq along the direction of Cov»
(=the eigenvector with eigenvalue closest to 0).

If C # 0, then x(t) = eA‘t(C1v1 + Cge“?’m’va) ~istee CreMvy = Cixy(t)
i.e. all solutions with C; # 0 move for t — oo asymptotically to a line of direction Cyv;.

(Picture as in the previous case “with arrows reversed”)
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> A1 # A2 of opposite sign, WLOG X2 < 0 < \q:
In this case there are solutions that tend to Xeq for t — 400, but most of the solutions
(those for C; # 0) grows to infinity: indeed, if C; = 0, then

lim C,e vzzxeq

t—+oco

and if Cy # 0, then

X(t) = C1eM'vy + C26™2'Vo ~i 00 CreMy

grow to infinity in the direction of Cyvy. We say that x.q is unstable and we call it a
saddle point.

J. Brannan & E. Boyce, Differential Equations, Figure 3.3.4
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Il. A with real, distinct eigenvalues and \; =0
The general solution is X(t) = CiX(t) + CoXa(t) = Civy + Coe™2'vy

Each eigenvector v of eigenvalue A\ = 0 is of the form Cyv; and satisfies Av = 0. So
we have a line £ of critical points Xeq.
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Il. A with real, distinct eigenvalues and \; =0
The general solution is X(t) = CiX(t) + CoXa(t) = Civy + Coe™2'vy

Each eigenvector v of eigenvalue A\ = 0 is of the form Cyv; and satisfies Av = 0. So

we have a line £ of critical points Xeq.

> A =0and \x <0

The trajectories x(t) = Civi + Coe*2'vp
passing through points not in ¢ (i.e. with
C> # 0) move along half lines parallel to
Cov2 and asymptotically tend to the point
on ¢ given by limi— 1o X(t) = Cyvy .

J. Brannan & W. Boyce, Differential equations, Figure 3.3.8, =0, %,<0
&3
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Il. A with real, distinct eigenvalues and \; =0
The general solution is X(t) = CiX(t) + CoXa(t) = Civy + Coe™2'vy

Each eigenvector v of eigenvalue A\ = 0 is of the form Cyv; and satisfies Av = 0. So
we have a line £ of critical points Xeq.

J. Brannan & W. Boyce, Differential equations, Figure 3.3.8, =0, %,<0
&3

> A =0and \x <0

The trajectories x(t) = Civi + Coe*2'vp
passing through points not in ¢ (i.e. with
C> # 0) move along half lines parallel to
Covo and asymptotically tend to the point
on ¢ given by limi— 1o X(t) = Cyvy .

> A =0and \» >0

The situation is as above, with direction of
the trajectories not passing though the crit-
ical line reversed since

lim x(t) = Civy.

t——oco

i.e. the trajectories passing through points which are not on ¢ tend to points on ¢
backward in time and diverge to infinity for t — +oc.
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Summary of cases I. and Il.

Eigenvalues Sample Phase Portrait ~ Type of Critical Point
M#EN v, (0, 0) is a nodal source.
Both positive
1 Y,
’ MEN v, (0,0) is a nodal sink.
(MH] #0) Both negative
Yy
M#EkD v, (0,0) is a saddle.
t Opposite signs
v,
M=0 w-’};-;«'
andh, >0 ™ N
e 20 b/m,oguiwb(mum;
1. <-», formis ; by
(duA)=0) " B
and 2, <0 : e
oz .,

Stability
Unstable

Asymptotically

stable

Unstable

N6




lll. A with complex conjugate eigenvalues and )\, = \{ # 0

Write:

e )instead of \;.
Set A = p + iv with u, v € R.

o v for a fixed eigenvector of A for the eigenvalue .
Set v = a + /b with a, b real vectors.

General solution of x’ = Ax:
X(t) = Cy Rex1(t) + Co Imx1(t)

where .
X1(t) _ e(,u+/u)tv
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lll. A with complex conjugate eigenvalues and )\, = \{ # 0

Write:

e )instead of \;.
Set A = p + iv with u, v € R.

o v for a fixed eigenvector of A for the eigenvalue .
Set v = a + /b with a, b real vectors.

General solution of x’ = Ax:
X(t) = Cy Rex1(t) + Co Imx1(t)

where .
X1(t) _ e(,u+/u)tv

Explicit computations bring the set of fundamental solutions in the form:

Re x;(t) = €"'[cos(vt)a — sin(vt)b]
Im x4 (t) = e"'[cos(vt)b + sin(vt)a] .
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Since det(A) = AA # 0

- (9

is the unique equilibrium (or critical) point.

The solutions

Re x;(t) = "'[cos(vt)a — sin(vt)b]

Imx4(t) = e"![cos(vt)b + sin(vt)a] .

have an oscillatory behavior as functions of t.
The nature of the oscillation depends on ;1 = Re A.
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Example:

In section 3.5 we found that X’ = Ax, where A = <_01 (1)) has general solution

cost sint
x(1) = Cy <— sin t> +C (cos t>

where Cy, C; are constants and t € R.  Remark: periodic of period 27.
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Example:

In section 3.5 we found that X’ = Ax, where A = <_01 (1)) has general solution

cost sint
x(1) = Cy (— sin t> +C <cos t>

where Cy, C; are constants and t € R.  Remark: periodic of period 27.

Find the solution of the IVP for x’ = Ax with initial condition x(0) = (;) .



Example:

In section 3.5 we found that X’ = Ax, where A = (_01 2)) has general solution

cost sint
x(1) = Cy (— sin t> +C <cos t>

where Cy, C; are constants and t € R.  Remark: periodic of period 27.

Find the solution of the IVP for x’ = Ax with initial condition x(0) = (;) .

The solution of the IVP is x(t) = (?Eg) , Where
2

x1(t) = cost+2sint = v/5cos(f — t)
xo(t) = —sint +2cost = +/5sin(d — t)

i S _ 2
and 6 is chosen so that cose?_f,sme_\/5

<
~

/
T
X
Component plots.




Example:

In section 3.5 we found that X’ = Ax, where A = (_01 2)) has general solution

cost sint
x(1) = Cy (— sin t> +C <cos t>

where Cy, C; are constants and t € R.  Remark: periodic of period 27.
Find the solution of the IVP for x’ = Ax with initial condition x(0) = (1) .

2
The solution of the IVP is x(t) = xi(1) , where X
X2(t) 3

x1(t) = cost+2sint = v/5cos(f — t) 2
x2(t):—sint+2cosz‘:fsin(@—t) 1
and 6 is chosen so that cos6 = \[, sing = % _ s

O\ /\o

A
i D /- /6 7 . The trajectory of the solution in the

s

Component plots.

2 _
X5 = 3.

phase plane lies on the circle x12 +
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Back to the general case, with set of fundamental solutions:

Re x;(t) = "'[cos(vt)a — sin(vt)b]
Im x4 (t) = e"![cos(vt)b + sin(vt)a] .

o u=0,i.e. \=jv: [see previous example, where \ = /]

Re x4 and Im x4 are periodic function of ¢ of period T = 27"

In the phase plane:

The trajectories are ellipses.

The origin (0, 0) is a called a center and it is said to be stable.

o n<O0:

The amplitude of the oscillations of Re x4 and Im xy decays exponentially as t — +oo.
In the phase plane:

The trajectories spiral around (0, 0) and approach (0,0) at t — +o0.

The origin (0, 0) is a called a spiral sink and it is said to be asymptotically stable.

o u>0:
The amplitude of the oscillations of Re x; and Im x;y grows exponentially as t — +oo.
In the phase plane:

The trajectories spiral out of (0,0) as t increases.
The origin (0, 0) is a called a spiral source and it is said to be unstable.



Summary of case IlI.

EEEN
TABLE 3.4.

||
1

Phase portraits for X" = Ax when A has complex eigenvalues.

Eigenvalues

A=putiv
u=<0

h=puxiv
u=0

h=pusiv
u=0

Sample Phase Portrait

E

D—
D—

Type of Critical Point
(0, 0) is a spiral sink.

(0, 0) is aspiral source.

(0, 0) is a center.

Stability

Asymptotically
stable

Unstable

Stable




IV. A with two repeated real eigenvalues equal to \
X # 0 because A # 0. So det(A) = X2 # 0.

Thus x’ = Ax has a unique equilibrium solution Xeq = (8)
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IV. A with two repeated real eigenvalues equal to \
X # 0 because A # 0. So det(A) = X2 # 0.
Thus x’ = Ax has a unique equilibrium solution Xeq = (8)
Recall that two cases have to be distinguished:
A 0) . . .
o A= (O )\> is a diagonal matrix.
o A s not a diagonal matrix.
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IV. A with two repeated real eigenvalues equal to \
X # 0 because A # 0. So det(A) = X2 # 0.

Thus x’ = Ax has a unique equilibrium solution Xeq = (8)

Recall that two cases have to be distinguished:

A 0) . . .
o A= (O A) is a diagonal matrix.

o A s not a diagonal matrix.

We will not treat in details the case where A is not diagonal.
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IV. A with two repeated real eigenvalues equal to \
X # 0 because A # 0. So det(A) = X2 # 0.

Thus x’ = Ax has a unique equilibrium solution Xeq = (8)

Recall that two cases have to be distinguished:

0 X
o A s not a diagonal matrix.

o A= ()‘ O) is a diagonal matrix.
We will not treat in details the case where A is not diagonal.

A 0).
IfA:(O A).

then vy = (2)) and vy = ((1)) are two linearly indep. eigenvectors with eigenvalue .
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IV. A with two repeated real eigenvalues equal to \
X # 0 because A # 0. So det(A) = X2 # 0.

Thus x’ = Ax has a unique equilibrium solution Xeq = (8)

Recall that two cases have to be distinguished:

0 X
o A s not a diagonal matrix.

o A= ()‘ O) is a diagonal matrix.

We will not treat in details the case where A is not diagonal.

A 0).
IfA:(O A).

then vy = (2)) and vy = ((1) are two linearly indep. eigenvectors with eigenvalue .

The general solutionis x(t) = Cie™ <(1)> + CoeM (?) =eM (g;)
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IV. A with two repeated real eigenvalues equal to \
X # 0 because A # 0. So det(A) = X2 # 0.

Thus x’ = Ax has a unique equilibrium solution Xeq = (8)

Recall that two cases have to be distinguished:

0 X
o A s not a diagonal matrix.

o A= ()‘ O) is a diagonal matrix.

We will not treat in details the case where A is not diagonal.

A 0).
IfA:(O A).

then vy = (2)) and vy = ((1) are two linearly indep. eigenvectors with eigenvalue .
: H _ At 1 At 0 _ At C1
The general solution is x(t) = Cie o)+ C.e 1)=¢ (¢
2

In the phase space, the trajectory of every solution is a half-line with endpoint 0.
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Example: [\ = —1]
-1 0
LetA = ( 0 1

). Find the solution of the IVP: x’ = Ax with x(0) = (

2)



Example: [\ = —1]

LetA = (_01 _°1>. Find the solution of the IVP: x' = Ax with (0) = (1)
. . —t C1
As above, the general solution is x(t) = e G

Determine the value of C;, C; from the initial condition: (;) =x(0) = (CZ) .

The solution is hence x(t) = (28;) =e! <;>
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Example: [\ = —1]
Let A — (_01 _°1>. Find the solution of the IVP: x' — Ax with x(0) — (;)
. . —t C1
As above, the general solution is x(t) = e (Cz)'
Determine the value of C;, C; from the initial condition: (;) =x(0) = (CZ) .
. . _ X1 (t) _ —t 1
The solution is hence x(t) = (xz(t)> =e <2 .

Notice that lim;—, o0 X(t) = (8)
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Example: [\ = —1]

LetA = (_01 _°1>. Find the solution of the IVP: x' = Ax with (0) = (1)

As above, the general solution is x(t) = ™' (g‘)
2

Determine the value of C;, C; from the initial condition: (1> =x(0) = (01) .

2
The solution is hence x(t) = (28;) =e! <;>

Notice that lim;—, o0 X(t) = (8)

—t
Since % = ee_tz = 2, the trajectory lies on

)
the straight-line xo = 2x;.
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Example: [\ = —1]

LetA = (_01 _°1>. Find the solution of the IVP: x' = Ax with (0) = (1)

As above, the general solution is x(t) = ™' (g‘)
2

Determine the value of C;, C; from the initial condition: (1> =x(0) = (C1> .

2
The solution is hence x(t) = (28;) =e! (;)

Notice that lim;—, o0 X(t) = (8)

—t
Since % = ee_tz = 2, the trajectory lies on

)
the straight-line xo = 2x;.

Since xi(t) = e™' > 0, the trajectory de-
scribes the red half-line in the picture, from
oo towards (0, 0).
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Example: [\ = —1]

LetA = (_01 _°1>. Find the solution of the IVP: x' = Ax with (0) = (1)

As above, the general solution is x(t) = e~ (g‘)
2

Determine the value of C;, C; from the initial condition: ( ) =x(0) = (C;) .

The solution is hence x(t) = <X1(t)> =e! <;>

Xg(t)

Notice that lim;—, o0 X(t) = (8)

—t
Since % = ee_tz = 2, the trajectory lieson — — — —

)
the straight-line xo = 2x;.

Since xi(t) = e™' > 0, the trajectory de-
scribes the red half-line in the picture, from
oo towards (0, 0).
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Summary of case IV
EEEEN

TABLE 351 | Phase portraits for x' = Ax when A has a single repeated eigenvalue.

Nature of A and Sample Phase
Eigenvalues Portrait

A:

l>{)

dugonal
>0

A is not
diagonal.
A<O

!k
=
<=

TAREMNAR B W BOYCE, DIERRENTIL EQUATions, P 1BY

Type of Critical
Point

(0, 0) is an
unstable proper
node.

Nore: (0, 0) is also
called an unstable
star node.

(0, 0) is a stable
proper node.
Note: (0, 0) is also
called a stable star
node.

(0, 0) is an
unstable improper
node.

Note: (0, 0) is also
called an unstable
degenerate node.
(0, 0) is a stable
improper node.
Nore: (0, 0) is also
called a stable
degenerate node.

Stability

Unstable

Asymptotically
stable

Unstable

Asymptotically
stable




The case of non-homogenous systems x’ = Ax + b

x' = A(x —v) where

x = x(t)
A
v

is the unknown matrix function
is a constant matrix
is a constant vector

Solution method:

@ Sety(t) =x(t) — v. Theny satisfies y’ = Ay.
@ Solve y’ = Ay for the general solution y(t) = Cyy4(t) + Cyy2(t) with Cy, C, constants.

[Example on handout]

@ Then x(t) = y(t) + v is the solution of the initial system.
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The case of non-homogenous systems x’ = Ax + b

x = x(t) is the unknown matrix function
x' = A(x —v) where A is a constant matrix
v is a constant vector
Solution method: [Example on handout]

o Sety(t) = x(t) — v. Then y satisfies y’ = Ay.
@ Solve y’ = Ay for the general solution y(t) = Cyy4(t) + Cyy2(t) with Cy, C, constants.
o Then x(t) = y(t) + v is the solution of the initial system.

x = x(t) is the unknown matrix function
x' = Ax+b where A is a constant matrix with det A £ 0
b is a constant vector
Solution method: [Example on handout]

@ Solve Ax + b = 0. The solution is Xeq. Hence Axeq +b =0, i.6. b = —AXeq.
@ Substitute in the system, which becomes X’ = A(X — Xeq)-
@ Solve as before.



The case of non-homogenous systems x’ = Ax + b

x = x(t) is the unknown matrix function
x' = A(x —v) where A is a constant matrix
v is a constant vector
Solution method: [Example on handout]

o Sety(t) = x(t) — v. Then y satisfies y’ = Ay.
@ Solve y’ = Ay for the general solution y(t) = Cyy4(t) + Cyy2(t) with Cy, C, constants.
o Then x(t) = y(t) + v is the solution of the initial system.

x = x(t) is the unknown matrix function
x' = Ax+b where A is a constant matrix with det A £ 0
b is a constant vector
Solution method: [Example on handout]

@ Solve Ax + b = 0. The solution is Xeq. Hence Axeq +b =0, i.6. b = —AXeq.
@ Substitute in the system, which becomes X’ = A(X — Xeq)-
@ Solve as before.

Conclusion: translation of xeq to (0, 0) reduces the analysis (solutions and stability) of
x’ = Ax + b to that of a homogenous system, as before in this section.



