EXAMPLE (SECTION 4.2)
Determine the longest interval ion which the IVP

$$
\left(t^{2}-1\right) y^{\prime \prime}-3 t y^{\prime}+4 y=\operatorname{sim}(t) \text { with } y(0)=2, y^{\prime}(0)=1
$$

has a iznce diff. solution.
 g are continuous functions of f fa all $t \neq \pm$). The largest interval contrainung 0 on which they are continuous is therefore $(-1 ; 1)$. This is the largest interval where the given IVP has a tisice differentiable outran.
EXAMPLES (SECTION 4.2)

- (Ex, 4.2, $m^{0} 12$) Find the Wranskian of the functions x and $x e^{x}$

$$
W\left[x, x e^{x}\right]=\left|\begin{array}{cc}
x & x e^{x} \\
1 & e^{x}(1+x)
\end{array}\right|=x e^{x}(1+x)-x e^{x}=x^{2} e^{x}
$$

- $\left(\left[x, 4,2, x^{\circ} 18\right.\right.$ of $W[f, g](t)=3 e^{2 t}$ and $f(t)=e^{4 t}$, from $g(t)$

$$
3 e^{2 t}=\left|\begin{array}{ll}
e^{4 t} & g(t) \\
4 e^{4 t} & g^{\prime}(t)
\end{array}\right|=e^{4 t}\left(g^{\prime}(t)-4 g(t)\right)
$$

i.e. $g^{\prime}(t)-4 g(t)=3 e^{-2 t}$ (1st order linear $D E$ in g)

Integrating factor $\mu(t)=e^{-4 t}$ because $\int-4 d t=-4 t+C$

$$
\begin{array}{lr}
\left(e^{-4 t} g(t)\right)^{\prime}=3 e^{-2 t} e^{-4 t}=3 e^{-6 t} \\
e^{-4 t} g(t)=\int 3 e^{-6 t} d t=\frac{1}{2} e^{-6 t}+C & \left(t e^{-t}\right)^{\prime}=e^{-t}-6 e^{-t} \\
& =e^{-t}(1-t)=-t
\end{array}
$$

So : $g(t)=\frac{1}{2} e^{-2 t}+C e^{4 t}, c \in \mathbb{R}$

