EXAMPLES (SECTION 4.S]

- $y^{\prime \prime}-3 y^{\prime}-4 y=4 t^{2}$

The general sdutron is of the form $y(t)=y_{c}(t)+y_{1}(t)$ where

- $y_{c}(t)$ is the complementary odutron ($=$ general sdutron of $y^{\prime \prime}-3 y^{\prime}-4 y=0$)
- $Y_{1}(t)$ is a particular solution of the given $D E$.

Go find $y_{c}(t)$: characteristic equation of $y^{\prime \prime}-3 y^{\prime}-4 y=0$ is $\lambda^{2}-3 \lambda-4=0$ $(\lambda-4)(\lambda+1)$
TEes reads are $\lambda_{1}=4$ and $\lambda_{2}=-1 \quad$ (real diotimet roots)
Thus $y_{c}(t)=C_{1} e^{4 t}+C_{2} e^{-t}$
Go find $y_{1}(t)$: the manhamogeneous beer $4 t^{2}$ is a polynomial of degree 2 which is mot a solution of the hornogenous DE. The tattle suggests to choose $V_{1}(t)=A t^{2}+B t+C$ (= paymomial of same degree as t^{2}).
where A, B, C are parameters which we are going to determine ty ourotituting $Y_{1}(t)$ un the $D E$

$$
y_{1}=A t^{2}+B t+C, \quad y_{1}^{\prime}=2 A t+B, \quad y_{1}^{\prime \prime}=2 A
$$

Substitute into the DE:

$$
\begin{aligned}
y_{1}^{\prime \prime}-3 y_{1}^{\prime}-4 y_{1}=4 t^{2} & \Leftrightarrow 2 A-3(2 A t+B)-4\left(A t^{2}+B t+C\right)=4 t^{2} \\
& \Leftrightarrow-4 A t^{2}-(6 A+4 B) t+2 A-3 B-4 C=4 t^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \Leftrightarrow\left\{\begin{array}{l}
-4 A= \\
3 A+2 \\
2 A-3
\end{array}\right. \\
& { }^{2}+\frac{3}{2} t+\frac{13}{8}
\end{aligned}
$$

Hence: $Y_{1}(t)=-t^{2}+\frac{3}{2} t+\frac{13}{8}$
Conclusion: the general solution of the DE is
$y(t)=C_{1} e^{4 t}+C_{2} e^{-t}-t^{2}+\frac{3}{2} t-\frac{13}{8}$, where $C_{11} C_{2}$ are archirary constants.

- $y^{\prime \prime}-3 y^{\prime}-4 y=e^{-t}$

The associated homogeneous DE $y^{\prime \prime}-3 y^{\prime}-4 y=0$ is equal bo that of the previous example. We only need bo frond a particular solution, say
$y_{2}(t)$. In this case, the nom homogeneous term is e^{-t}, and e^{-t} is a solution of $y^{\prime \prime}-3 y^{\prime}-4 y=0$, hat $t e^{-t}$ is mot.
Hence $y_{2}(t)=A t e^{-t}$ is the guess according to the table.
sutrotrtute in the DE to from A :

$$
\begin{aligned}
y_{2}(t) & =A t e^{-t} \\
y_{2}^{\prime}(t) & =A\left(e^{-t}-t e^{-t}\right)=A(1-t) e^{-t} \\
y_{2}^{\prime \prime}(t) & =-A e^{-t}-A(1-t) e^{-t} \\
& =-2 A e^{-t}+A t e^{-t}
\end{aligned}
$$

$$
\begin{aligned}
& y_{2}^{\prime \prime}-3 y_{2}^{\prime}-4 y_{2}=e^{-t} \Leftrightarrow-2 A e^{-t}+A t e^{-t}-3 A e^{-t}+3 A t e^{-t}-4 A t e^{-t}=e^{-t} \\
& \Leftrightarrow-2 A+A t-3 A+3 A t-4 A t=1 \quad \text { (recause } e^{-t} \neq 0 \text {) } \\
& \forall t \\
& \Leftrightarrow-5 A=1 \\
& \Leftrightarrow A=-\frac{1}{5}
\end{aligned}
$$

Thus: $Y_{2}(t)=-\frac{1}{5} t e^{-t}$ and $y(t)=C_{1} e^{4 t}+C_{2} e^{-t}-\frac{1}{5} t e^{-t}$.

- $y^{\prime \prime}-3 y^{\prime}-4 y=4 t^{2}+e^{-t}$

By the superposition punciple, a paretucular solution of this DE is the sur $Y_{1}+Y_{2}$ of the particular solutions found above. In this case, the general solution is therefore

$$
y(t)=C_{1} e^{4 t}+C_{2} e^{-t}-t^{2}+\frac{3}{2} t-\frac{13}{8}-\frac{1}{5} t e^{-t} .
$$

