Spring 2020

Shifted systems of first-order linear DE's with constant coefficients

	$\mathbf{x} = \mathbf{x}(t) \text{ is the unknown matrix function}$ $\mathbf{x}' = \mathbf{A}\mathbf{x} + \mathbf{b} \text{ where } \mathbf{A} \text{ is a constant matrix with det } \mathbf{A} \neq 0$ $\mathbf{b} \text{ is a constant water}$
Solution method:	D is a constant vector
• Set $\mathbf{v}(t) = \mathbf{x}(t) - \mathbf{v}$. Then \mathbf{v} satisfies $\mathbf{v}' = \mathbf{A}\mathbf{v}$.	Solution method:
 Solve y' = Ay for the general solution y(t) = C₁y₁(t) + C₁y₂(t) with C₁, C₂ constants. 	• Solve $Ax + b = 0$. Let v denote the solution. Hence $Av + b = 0$, i.e. $b = -Av$.
• Then $\mathbf{x}(t) = \mathbf{y}(t) + \mathbf{v}$ is the solution of the initial system.	• Substitute in the system, which becomes $\mathbf{x}' = \mathbf{A}(\mathbf{x} - \mathbf{v})$.
$\mathbf{P} = \begin{pmatrix} 2 & 1 \end{pmatrix} \mathbf{P} = \begin{pmatrix} 3 \end{pmatrix}$	• Solve as before.
Example: Solve $\mathbf{x}' = \mathbf{A}(\mathbf{x} - \mathbf{v})$ where $\mathbf{A} = \begin{pmatrix} 1 & 2 \end{pmatrix}$ and $\mathbf{v} = \begin{pmatrix} -1 \end{pmatrix}$. Solution:	Example: Solve $\mathbf{x}' = \mathbf{A}\mathbf{x} + \mathbf{b}$ where $\mathbf{A} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$.
• Set $\mathbf{v} = \mathbf{x} - \mathbf{v}$.	Solution:
• Solve $\mathbf{y}' = \mathbf{A}\mathbf{y}$. The characteristic polynomial of \mathbf{A} is	• Solve $\mathbf{A}\mathbf{x} + \mathbf{b} = 0$, i.e. $\mathbf{A}\mathbf{x} = -\mathbf{b}$. This is the system $\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$
$\det(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{vmatrix} = \lambda^2 - 4\lambda + 3 = (\lambda - 1)(\lambda - 3).$	$\begin{pmatrix} 0\\1 \end{pmatrix}, \text{ with solution } x_1 = -\frac{1}{3}, x_2 = \frac{2}{3}. \text{ So } \mathbf{v} = \begin{pmatrix} -1/3\\2/3 \end{pmatrix}.$ • Set $\mathbf{v} = \mathbf{x} - \mathbf{v}.$
The eigenvalues of A are $\lambda_1 = 1$ and $\lambda_2 = 3$.	• Solve $\mathbf{y}' = \mathbf{A}\mathbf{y}$. As in the previous example, The general solution is
$\mathbf{v}_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ is an eigenvector of \mathbf{A} for the eigenvalue $\lambda_1 = 1$.	$\mathbf{y}(t) = C_1 e^t \begin{pmatrix} -1\\ 1 \end{pmatrix} + C_2 e^{3t} \begin{pmatrix} 1\\ 1 \end{pmatrix}$ where C_1, C_2 are constants.
$\mathbf{v}_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ is an eigenvector of \mathbf{A} for the eigenvalue $\lambda_2 = 3$.	• The general solution of $\mathbf{x}' = \mathbf{A}\mathbf{x} + \mathbf{b}$ is hence
The general solution is $\mathbf{y}(t) = C_1 e^t \begin{pmatrix} -1 \\ 1 \end{pmatrix} + C_2 e^{3t} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ where C_1, C_2	$\mathbf{x}(t) = C_1 e^t inom{-1}{1} + C_2 e^{3t} inom{1}{1} + \mathbf{v}$
are constants.The general solution of the initial system of DE's is	$= C_1 e^t \begin{pmatrix} -1 \\ 1 \end{pmatrix} + C_2 e^{3t} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \begin{pmatrix} -1/3 \\ 2/3 \end{pmatrix},$
$\mathbf{x}(t) = C_1 e^t \begin{pmatrix} -1\\1 \end{pmatrix} + C_2 e^{3t} \begin{pmatrix} 1\\1 \end{pmatrix} + \begin{pmatrix} 3\\-1 \end{pmatrix} \text{ where } C_1, C_2 \text{ are constants.}$	where C_1, C_2 are constants.