Shifted systems of first-order linear DE's with constant coefficients

$\mathbf{x}^{\prime}=\mathbf{A}(\mathbf{x}-\mathbf{v}) \quad$ where	$\mathbf{x}=\mathbf{x}(t)$ is the unknown matrix function \mathbf{A} is a constant matrix \mathbf{v} is a constant vector

Solution method:

- Set $\mathbf{y}(t)=\mathbf{x}(t)-\mathbf{v}$. Then \mathbf{y} satisfies $\mathbf{y}^{\prime}=\mathbf{A y}$.
- Solve $\mathbf{y}^{\prime}=\mathbf{A y}$ for the general solution $\mathbf{y}(t)=C_{1} \mathbf{y}_{1}(t)+C_{1} \mathbf{y}_{2}(t)$ with C_{1}, C_{2} constants.
- Then $\mathbf{x}(t)=\mathbf{y}(t)+\mathbf{v}$ is the solution of the initial system.

Example: Solve $\mathbf{x}^{\prime}=\mathbf{A}(\mathbf{x}-\mathbf{v})$ where $\mathbf{A}=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$ and $\mathbf{v}=\binom{3}{-1}$.
Solution:

- $\operatorname{Set} \mathbf{y}=\mathbf{x}-\mathbf{v}$.
- Solve $\mathbf{y}^{\prime}=\mathbf{A y}$.

The characteristic polynomial of \mathbf{A} is

$$
\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=\left|\begin{array}{cc}
2-\lambda & 1 \\
1 & 2-\lambda
\end{array}\right|=\lambda^{2}-4 \lambda+3=(\lambda-1)(\lambda-3)
$$

The eigenvalues of \mathbf{A} are $\lambda_{1}=1$ and $\lambda_{2}=3$.
$\mathbf{v}_{1}=\binom{-1}{1}$ is an eigenvector of \mathbf{A} for the eigenvalue $\lambda_{1}=1$.
$\mathbf{v}_{2}=\binom{1}{1}$ is an eigenvector of \mathbf{A} for the eigenvalue $\lambda_{2}=3$.
The general solution is $\mathbf{y}(t)=C_{1} e^{t}\binom{-1}{1}+C_{2} e^{3 t}\binom{1}{1}$ where C_{1}, C_{2} are constants.

- The general solution of the initial system of DE's is
$\mathbf{x}(t)=C_{1} e^{t}\binom{-1}{1}+C_{2} e^{3 t}\binom{1}{1}+\binom{3}{-1} \quad$ where C_{1}, C_{2} are constants.

| $\mathbf{x}^{\prime}=\mathbf{A x}+\mathbf{b} \quad$ where | $\mathbf{x}=\mathbf{x}(t)$
 \mathbf{A}
 \mathbf{b} | is the unknown matrix function |
| :--- | :--- | :--- | :--- |
| is a constant matrix with $\operatorname{det} \mathbf{A} \neq 0$ | | |
| is a constant vector | | |

Solution method:

- Solve $\mathbf{A x}+\mathbf{b}=\mathbf{0}$. Let \mathbf{v} denote the solution. Hence $\mathbf{A v}+\mathbf{b}=\mathbf{0}$, i.e. $\mathbf{b}=-\mathbf{A v}$.
- Substitute in the system, which becomes $\mathbf{x}^{\prime}=\mathbf{A}(\mathbf{x}-\mathbf{v})$.
- Solve as before.

Example: Solve $\mathbf{x}^{\prime}=\mathbf{A x}+\mathbf{b}$ where $\mathbf{A}=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$ and $\mathbf{b}=\binom{0}{-1}$. Solution:

- Solve $\mathbf{A x}+\mathbf{b}=\mathbf{0}$, i.e. $\mathbf{A} \mathbf{x}=-\mathbf{b}$. This is the system $\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)\binom{x_{1}}{x_{2}}=$ $\binom{0}{1}$, with solution $x_{1}=-\frac{1}{3}, x_{2}=\frac{2}{3}$. So $\mathbf{v}=\binom{-1 / 3}{2 / 3}$.
- Set $\mathbf{y}=\mathbf{x}-\mathbf{v}$.
- Solve $\mathbf{y}^{\prime}=\mathbf{A y}$. As in the previous example, The general solution is $\mathbf{y}(t)=C_{1} e^{t}\binom{-1}{1}+C_{2} e^{3 t}\binom{1}{1}$ where C_{1}, C_{2} are constants.
- The general solution of $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}+\mathbf{b}$ is hence

$$
\begin{aligned}
\mathbf{x}(t) & =C_{1} e^{t}\binom{-1}{1}+C_{2} e^{3 t}\binom{1}{1}+\mathbf{v} \\
& =C_{1} e^{t}\binom{-1}{1}+C_{2} e^{3 t}\binom{1}{1}+\binom{-1 / 3}{2 / 3}
\end{aligned}
$$

where C_{1}, C_{2} are constants.

