MIDTERM I

\qquad (Name and Signature)

1. Consider the following initial value problem

$$
y^{\prime}+y^{3} \sin (x)=0 \text { and } y(0)=3
$$

a. (2 points) Identify the equation (order, linear, homogeneous, nonlinear, separable, exact, etc). (Explain and justify your reasoning.)
b. (5 points) Solve the initial value problem. (You may leave your answer in an implicit form.)
2. Consider the matrix $\mathbf{A}=\left(\begin{array}{ll}-5 & 2 \\ -6 & 2\end{array}\right)$
a. (3 points) Compute the trace, the determinant and the characteristic equation of \mathbf{A}.
b. (4 points) Solve the system of differential equations: $\mathbf{x}^{\prime}=\mathbf{A x}$.
c. (1 point) Explain why $(x, y)=(0,0)$ is the unique critical point of the system.
3. (3 points) Determine the longest interval where the solution of the following initial value problem exists and is unique. Justify your answer. (Do not attempt to solve the differential equation.)

$$
\left(t^{2}-4\right) \frac{d y}{d t}+3 \ln (t) y=5 \sin \left(t^{2}\right) \text { with } y(1)=5
$$

5. ($4+3$ points) Two tanks are connected: a pipe where the water from Tank 1 goes into Tank 2. Initially Tank 1 contains 20 gal of water and 10 oz of sugar, while Tank 2 contains 40 gal of water and 20 oz of sugar. Water containing $5 \mathrm{oz} / \mathrm{gal}$ of sugar flows into Tank 1 at a rate of $3 \mathrm{gal} / \mathrm{min}$, and the well-stirred solution flows from Tank 1 to Tank 2 at a rate of $3 \mathrm{gal} / \mathrm{min}$. The well stirred solution in Tank 2 drains out at a rate of $3 \mathrm{gal} / \mathrm{min}$ and leaves the system. Denote by $Q_{1}(t)$ the amount (in oz) of sugar in Tank 1 at time t, and $Q_{2}(t)$ the amount (in oz) of sugar in Tank 2 at time t.

Set up the system of differential equations that models the amount of sugar in each tank: clearly write the system of the form $\mathbf{Q}^{\prime}=\mathbf{A Q}+\mathbf{b}$ where $\mathbf{Q}=\binom{Q_{1}}{Q_{2}}$. (No need to find the solution.)
Find the equilibrium of this system.

