Georgia Tech - Lorraine
Spring 2020
Differential Equations
Math 2552
2/12/2020

Last Name:

First Name:

EX	
1	
2	
3	
4	
TOT	

Midterm $\mathrm{n}^{0} 1$ (50 minutes)

- Write your answers in the provided answer box.
- Show your work and justify your answers.
- Calculators, notes, cell phones, books are not allowed.
- Please do not use red or pink ink.

Exercise $1[1+1+1+1+5$ points]
Consider the differential equation: $y^{\prime}=x^{2} y^{2}-4 x^{2}$.
(a) Is this differential equation separable? AnSWER: Yes \downarrow No \square.

Justify:

$$
y^{\prime}=x^{2}\left(y^{2}-4\right) \text { is of the form } y^{\prime}=f(x) g(y) \text { where } f(x)=x^{2} \text { and } g(y)=y^{2}-4
$$

(b) Is this differential equation linear? Answer: YesNo Justify. If it is linear, write it in standard form.
TE is not linear because of the berm y^{2}
(c) Is this differential equation exact? Answer: Yes \forall

No \square.
Justify:
Ency separable differential equation is exact. Go check this for the test for excactoress: write the $D E$ as $-x^{2}+\frac{1}{y^{2}-4} y^{\prime}=0$ and $\operatorname{set} \eta(x, y)=-x^{2}$ and $N(x, y)=\frac{1}{y^{2}-4}$. Chen $\frac{\partial M}{\partial y}=0=\frac{\partial N}{\partial x}$
(d) Is this differential equation a Bernoulli differential equation? Answer: Yes \square No \downarrow. Justify:
A Bernoulli $D E$ is of the form $y^{\prime}+q(x) y=r(x) y^{m}$ for some real number n. Our DE cannot le bought to this form because of the term $-4 x^{2}$ (not multiplying $y^{\prime}, y \quad \sigma y^{2}$)

Exercise 1 (continued)
(e) Solve the differential equation $y^{\prime}=x^{2} y^{2}-4 x^{2}$.
[Hint: you might want to use a partial fraction decomposition to compute one of the integrals]
$y^{\prime}=x^{2}\left(y^{2}-4\right)$ separable 1 st ode DE, efotice that $y^{2}-4=(y-2)(y+2)$.
$y= \pm 2$ are constant seutrons. If $y \neq \pm 2$, i.e. $y^{2}-4 \neq 0$, can deride lath sides by $y^{2}-4$ and get : $\frac{1}{(y-2)(y+2)} y^{\prime}=x^{2}$. Tonkegrate both sides wat x :

$$
\begin{align*}
& \int \frac{1}{(y-2)(y+2)} \frac{d y}{d x} d x=\int x^{2} d x \text {, i.e. } \quad \int \frac{1}{(y-2)(y+2)} d y=\int x^{2} d x \quad(*) \tag{k}\\
& \text { Partial fraction decomposition: } \frac{1}{(y-2)(y+2)}=\frac{B}{y-2}+\frac{B}{y+2}=\frac{(A+B) y+2(A-B)}{(y-2)(y+2)}
\end{align*}
$$

yields: $(A+B) y+2(A-B)=1$. This must held for all y, which is possible only if

$$
\left\{\begin{array}{l}
A+B=0 \\
2(A-B)=1
\end{array} \text { i.e. } A=\frac{1}{4}, B=-\frac{1}{4}\right.
$$

Thus $\int \frac{1}{(y-2)(y+2)} d y=\frac{1}{4} \int \frac{d y}{y-2}-\frac{1}{4} \int \frac{d y}{y+2}=\frac{1}{4} \ln |y-2|-\frac{1}{4} \ln |y+2|+$ canst. and (k) is oovred by
$\frac{1}{4} \ln \left|\frac{y-2}{y+2}\right|=\frac{1}{3} x^{2}+C_{0}, C_{0}$ constant
i.e. $\ln \left|\frac{y-2}{y+2}\right|=\frac{4}{3} x^{2}+C_{1}$, i.e. $\left|\frac{y-2}{y+2}\right|=e^{C_{1}} e^{\frac{4}{3} x^{2}}$, i.e. $\frac{y-2}{y+2}=C e^{\frac{4}{3} x^{2}}$
where C is a constant $\neq 0$.
To solve for y, we multiply roth sores by $y+2$ and obtain $y-2=C(y+2) e^{4 / 3 x^{2}}$. Then collect y and get $y\left(1-C e^{4 / 3 x^{2}}\right)=2\left(1+C e^{4 / 3 x^{2}}\right)$.
Thus $y=2 \frac{1+C e^{\frac{4}{3} x^{2}}}{1-C e^{\frac{4}{3} x^{2}}}$, where C is an artibary constant ($C=0$ corresponds

Answer: solution $y=2$)
$y=2 \frac{1+C e^{4 / 3 x^{2}}}{e^{4 / 3 x^{2}}}, C$ a constant; adoutronal constant solution $y=-2$

Exercise 2 [3 points] The size of a population of wolves is modeled by the differential equation

$$
\frac{d y}{d t}=-\frac{1}{50} y(y-100)
$$

where $y=y(t)$ is the size of the population at time t.and isponstivent.
Estimate the size of the population after a long period of time if the initial size is 90 wolves.
Justify your answer.
The $D E$ modeling the rae $y(t)$ of the population at time t is an autonomous lIst ode DE of the form $\frac{d y}{d t}=f(y)$ where $f(y)=-\frac{1}{50} y(y-100)$
The graph of if is a parabola concave down and the roots of $f(y)=0$ are $y=0, y=100$. The vertex of the parearcla is $\left(x_{v}, y_{v}\right)$ where $x_{v}=50=\frac{100}{2}$ and $y_{v}=f(50)=50$. A sketch of the graph of f

Equilihuum solutions of the DE are the solutions of $f(y)=0$, i.e. $y=0, y=100$

- = qualitative graph of the sdutron of the IV P: $\frac{d y}{d t}=f(y)$ with unutral comdutron $y(0)=90$

The size of the population after a long prod of time bends to stablize at the value of 100 units (without dyrassing this value)

Answer: The size of the population after a long period of time is 100 wolves.

Exercise 3 [1+2+5+2+(1 bonus) points]
Consider the matrix $\mathbf{A}=\left(\begin{array}{ll}0 & 1 \\ 3 & 2\end{array}\right)$.
(a) Compute the trace and the determinant of \mathbf{A}.
$\operatorname{trace}\left(\begin{array}{ll}0 & 1 \\ 3 & 2\end{array}\right)=0+2=2 ; \operatorname{det} A=\left|\begin{array}{ll}0 & 1 \\ 3 & 2\end{array}\right|=0 \cdot 2-1 \cdot 3=-3$
Answers: The trace of \mathbf{A} is $\mathbf{2}$ The determinant of \mathbf{A} is $-\mathbf{3}$
(b) Compute the characteristic polynomial of \mathbf{A} and determine the eigenvalues of \mathbf{A}.

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
-\lambda & 1 \\
3 & 2-\lambda
\end{array}\right|=-\lambda(2-\lambda)-3=\lambda^{2}-2 \lambda-3=(\lambda-3)(\lambda+1)
$$

The eigenvalue of A are the roots of the characterestro equation $\operatorname{dut}(A-\lambda I)=0$ i.e. $(\lambda-3)(\lambda+1)=0$, suredivig $\lambda_{1}=3, \lambda_{2}=-1$

ANSWERS: Characteristic polynomial: $\lambda^{2}-2 \lambda-3$, line. $(\lambda-3)(\lambda+1)$ Eigenvalues: $\lambda_{1}=3, \lambda_{2}=-1$
(c) Find the general solution of the system of differential equations $\mathbf{x}^{\prime}=\mathbf{A x}$.

Eigenvectors for eigenvalue $\lambda_{1}=3$: $\left(A-\lambda_{1} I\right)\binom{x_{1}}{x_{2}}=\binom{0}{0}$, i.e. $\left(\begin{array}{cc}-3 & 1 \\ 3 & -1\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{a}{0}$, i.e. $-3 x_{1}+x_{2}=0$ So $\binom{x_{1}}{x_{2}}=\binom{x_{1}}{3 x_{1}}=x_{1}\binom{1}{3}, x_{1} \in \mathbb{R}$
Framing the eigenvector $\underline{v}_{1}=\binom{1}{3}$, we obtain the atutron $\underline{x}_{1}(t)=e^{3 t}\binom{1}{3}$.
Eigenredtas for the eigenvalue $\lambda_{2}=-1 ;\left(A-\lambda_{2} I\right)\binom{x_{1}}{x_{2}}=\binom{0}{0}$, i.e. $\binom{1}{3}\binom{x_{1}}{x_{2}}=\binom{0}{0}$, i.. $x_{1}+x_{2}=0$ So $\binom{x_{1}}{x_{2}}=\binom{x_{1}}{-x_{1}}=x_{1}\binom{1}{-1}, x_{1} \in \mathbb{R}$.
Fixing the eigenvector $\underline{v}_{2}=\binom{1}{-1}$, we obtain the solution ${\underset{x}{2}}(t)=e^{-t}\binom{1}{-1}$.
Since $\lambda_{1}=3$ and $\lambda_{2}=-1$ are real and district, x_{1} and x_{-2} form a fundarnurtal set of solutions of the system $\underline{x}^{\prime}=A \underline{x}$. The general solution is therefore

Answer: $\quad \underline{x}(t)=C_{1} \underline{x}_{1}(t)+C_{2} \underline{x}_{2}(t)=C_{1} e^{3 t}\binom{1}{3}+C_{2} e^{-t}\binom{1}{-1}, C_{1}, C_{2}$ constants
(d) Find the solution of the initial value problem $\mathbf{x}^{\prime}=\mathbf{A x}$ with the initial condition $\mathbf{x}(0)=\binom{1}{-1}$. One can or serve that $\underline{x}_{2}(t)$ satrofies ${\underset{-2}{2}}^{(t)}(O)=\binom{1}{-1}$. By the unuqurnes of the sdutron of an IVP, this is the stutron we are locking for. OR! one can apply the usual method of determining C_{1}, C_{2} so that $\binom{1}{-1}=\mathcal{X}(0)=C_{1}\binom{1}{3}+C_{2}\binom{1}{-1}$, iv. $\left\{\begin{array}{l}C_{1}+C_{2}=1 \\ 3 C_{1}-C_{2}=-1\end{array}\right.$ yielding $C_{1}=0, C_{2}=1$ Answer: Che solution of this IVP is $\underline{x}_{2}(t)=e^{-t}\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)$.
(e) Bonus question: 1 additional point

The system $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ is equivalent to a second order differential equation $a y^{\prime \prime}+b y^{\prime}+c y=0$.
Determine a, b and c.
The syörem $\underline{x}^{\prime}=A \underline{x}$, lie. $\left\{\begin{array}{l}x_{1}^{\prime}=x_{2} \\ x_{2}^{\prime}=3 x_{1}+2 x_{2}\end{array}\right.$ can te transformed onto an equivalent
Ind order DE with constant coffricunts by setting $\left\{\begin{array}{l}x_{1}=y \\ x_{2}=y^{\prime}\end{array}\right.$ The second equation of the systern them leads to

$$
y^{\prime \prime}=3 y+2 y^{\prime} \text {, i.e. } \quad y^{\prime \prime}-2 y^{\prime}-3 y=0
$$

Thus $(a, b, c)=(1,-2,-3)$ ar any mon 2 ers mulbyle of it, since a, b, c are defined only up to multiplication fy a nom zero constant.

ANSWER: $(a, v, c)=(1,-2,-3)$ [a any mon zers multiple of this necta]

Exercise 4 [3 points]
Determine the largest interval I where the solution of the following initial value problem exists and is unique:

$$
\left(e^{t}-1\right) \frac{d y}{d t}+y=\frac{t}{t-2} \quad \text { with the initial condition } \quad y(1)=2
$$

Justify your work. (Do not attempt to solve the differential equation)
This is a linear DE. Its stand and farm is $\frac{d y}{d t}+\frac{\overbrace{1}^{e^{t}-1} y}{\frac{n(t)}{\left(e^{t}-1\right)(t-2)}} \frac{\overbrace{t}^{g(t)}}{\left(e^{t}\right.}$ The function $\mu(t)$ is defined and continuous peourded $e^{t}-1 \neq 0$, lie. for all $t \neq 0$, i.e. on $(-\infty, 0) \cup(0,+\infty)$
The function $g(t)=\frac{t}{\left(e^{t}-1\right)(t-2)}$ is defined and contrmuars veovidud $t \neq 0,2$ Thus roth $\mu(t)$ and $g(t)$ are def and contronuous an $(-\infty ; 0) \cup(0 ; 2) \cup(2 ;+\infty)$ Thus $I=(0 ; 2)$, because this is the largest intereral entruly contained in $(-\infty ; 0) \cup(0 ; 2) \cup(2 ;+\infty)$ and containing $t=1$

Answer: $\quad I=(0 ; 2)$

