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Midterm n0 2 (2 hours)

• Please email your solution to angela.pasquale@univ-lorraine.fr or angela.pasquale@georgiatech-metz.fr
today, by 12:30 pm (Atlanta time). Write “Midterm 2” in the subject.

• You can write your solution on the same pdf I sent you, for instance if you have a tablet or you can
print it. If you need extra space, add as many pages as needed.
Otherwise, please write your solutions on blank paper. You do not need to copy the questions, just
clearly mark the number of the exercises and their questions and separate the di↵erent exercises with
a horizontal line.

• Please call your file “yourname-Midterm2”.

• Show your work and justify your answers. Please organize your work clearly, neatly, and legibly.
Identify your answers.

• You have to solve the problems by yourself, you are not allowed to discuss problems and solutions
with other people in any form. Please abide to the Honor Code.

• I will be online during the whole exam time. You can send me messages by email. I will do my best
to answer as soon as I can. Sometimes I will be answering to other people. So please be patient.
Also, please understand that there are questions to which I cannot answer: for instance, if your
solution is correct or not.

• Maximum: 25 points

Exercise 1 [3+1+1+5+1 points]
Consider the linear di↵erential equation t2y00 � t(t+ 2)y0 + (t+ 2)y = 0 where t > 0.

(a) Verify that y1(t) = t and y2(t) = tet are solutions and that they are linearly independent when t > 0.

Please turn: Questions (b) to (e) on the following page �!

1

• y
,
Htt , y;Mel , y

'

:(tho : Ey
,

"
- Htt2) y ,

' Htt2) y , =
- Htt2) +4-1276=0

offence y , It is a solution .

• ydtt.tt , yKt ) settle , y
' '

zag . ett et +
'bet . get +bet

Egil - tlttdyjtcttalyz-tyzetttetl-tlttzxettteti-f.mg bet
= stet t Eset - tf bet + stet+get +Eet) +Get tztet
= go.ve/t-tXet.tY/et-zt/et.yy.et-betttYett/zXet=o

Hence yalt wi a solution .
• My . .yaw l Yj

,
¥1 . It, teen.ee/..tettt2et.bet=t2et to fat>o.

Ghees y , , y, are lini under . for t20



Exercise 1 (continued)

(b) Write the general solution of t2y00 � t(t+ 2)y0 + (t+ 2)y = 0 for t > 0.

We now consider the non-homogenous di↵erential equation

t2y00 � t(t+ 2)y0 + (t+ 2)y = t4et . (1)

(c) Write it in standard form.

(d) Find a particular solution.

(e) Determine the general solution of (1).

Please turn �!
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Exercise 2 [3+1+1+1 points]

Consider the system of linear DE’s x0 = Ax where x(t) =

✓
x1(t)
x2(t)

◆
and A =

✓
5 �3
3 �5

◆
.

(a) Find the general solution.

(b) Determine the equilibrium point, identify its type and determine its stability.

Please turn: Questions (c) to (d) on the following page �!
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Exercise 2 (continued)

(c) Pick one of the two eigenvalues of A you determined in (a) and call it �. Find an eigenvector v of A for
the eigenvalue � so that the solution x(t) = e�tv has first component equal to 1 at t = 0.

(d) Let x(t) = e�tv the solution you determined in (c). Sketch its trajectory in the phase plane.
(Do not forget to indicate by an arrowhead the direction of motion along the trajectory).

Please turn �!
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Exercise 3 [1+3+3+1 points]
A mass of 2 kg is hung from a spring of spring constant k = 1.85 N/m. Suppose that it is also attached to a
viscous damper that exerts a force of 0.03 N when the velocity of the mass is 0.05 m/s. The mass is pulled down
0.1 m below its equilibrium position and then released. Suppose that there is no external force.

(a) Determine the damping coe�cient �.

(b) Write down the appropriate initial value problem that governs the motion of the mass.

Please turn: Questions (c) to (d) on the following page �!
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Exercise 3 (continued)

(c) Solve the initial value problem and find the position of the mass at any time t.

(d) Determine the quasi-period of the motion.
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