Georgia Tech - Lorraine
Spring 2020
Differential Equations
Math 2552
2/12/2020

EX	
1	
2	
3	
TOT	

Midterm $\mathrm{n}^{0} 2$ (2 hours)

- Please email your solution to angela.pasquale@univ-lorraine.fr or angela.pasquale@georgiatech-metz.fr today, by $12: 30 \mathrm{pm}$ (Atlanta time). Write "Midterm 2" in the subject.
- You can write your solution on the same pdf I sent you, for instance if you have a tablet or you can print it. If you need extra space, add as many pages as needed.
Otherwise, please write your solutions on blank paper. You do not need to copy the questions, just clearly mark the number of the exercises and their questions and separate the different exercises with a horizontal line.
- Please call your file "yourname-Midterm2".
- Show your work and justify your answers. Please organize your work clearly, neatly, and legibly. Identify your answers.
- You have to solve the problems by yourself, you are not allowed to discuss problems and solutions with other people in any form. Please abide to the Honor Code.
- I will be online during the whole exam time. You can send me messages by email. I will do my best to answer as soon as I can. Sometimes I will be answering to other people. So please be patient. Also, please understand that there are questions to which I cannot answer: for instance, if your solution is correct or not.
- Maximum: 25 points

Exercise 1 [3+1+1+5+1 points]

Consider the linear differential equation $t^{2} y^{\prime \prime}-t(t+2) y^{\prime}+(t+2) y=0 \quad$ where $t>0$.
(a) Verify that $y_{1}(t)=t$ and $y_{2}(t)=t e^{t}$ are solutions and that they are linearly independent when $t>0$.

- $y_{1}(t)=t, y_{1}^{\prime}(t)=1, y_{1}^{\prime \prime}(t)=0: \quad t^{2} y_{1}^{\prime \prime}-t(t+2) y_{1}^{\prime}+(t+2) y_{1}=-t(t+2)+(t+2) t=0$ Hence $y_{1}(t)$ is a solution.
- $y_{2}(t)=t e^{t}, y_{2}^{\prime}(t)=e^{t}+t e^{t}, y_{2}^{\prime \prime}(t)=e^{t}+e^{t}+t e^{t}=2 e^{t}+t e^{t}$

$$
t^{2} y_{2}^{\prime \prime}-t(t+2) y_{2}^{\prime}+(t+2) y_{2}=t^{2}\left(2 e^{t}+t e^{t}\right)-t(t+2)\left(e^{t}+t e^{t}\right)+(t+2) t e^{t}
$$

$$
=2 t^{2} e^{t}+t^{3} e^{t}-t\left(6 e^{t}+2 t e^{t}+2 e^{2}+t^{2} e^{t}\right)+t^{2} e^{t}+2 t e^{t}
$$

Hence $y_{2}(t)$ is a solution.

$$
=2 t^{2} / e^{t}+t^{3} e^{t}-22 / e^{t}-2 b^{2} e^{t}-2 / 6 e^{t}-t^{3} e^{t}+2 / e^{t}+226 c^{t}=0
$$

- $W\left[y_{1}, y_{2}\right](t)=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|=\left|\begin{array}{cc}t & t e^{t} \\ 1 & e^{t}+t e^{e}\end{array}\right|=t e^{t}+t^{2} e^{t}-t e^{t}=t^{2} e^{t} \neq 0$ foct>0.

Thus y_{1}, y_{2} are lvi, under. $f \circ t>0 \quad$ Please turn: Questions (b) to (e) on the following page \longrightarrow

Exercise 1 (continued)
(b) Write the general solution of $t^{2} y^{\prime \prime}-t(t+2) y^{\prime}+(t+2) y=0$ for $t>0$.

$$
y(t)=C_{1} y_{1}(t)+C_{2} y_{2}(t)=C_{1} t+C_{2} t e^{t}, C_{1}, C_{2} \text { arhbrary constants }
$$

(because $y_{1} y_{2}$ twa ein.indeq. scutuorms
We now consider the non-homogenous differential equation
(c) Write it in standard form.

Fat no: $y^{2}-\frac{t+2}{t} y^{\prime}+\frac{t+2}{t^{2}} y=t^{2} e^{t}$
(d) Find a particular solution.

Apply the method of varuatron of parameters.. A partrenlar solution is

$$
y(t)=-y_{1}(t) \int \frac{y_{2}(t) g(t)}{w\left[y_{1} y_{2}\right](t)} d t+y_{2}(t) \int \frac{y_{1}(t) g(t)}{w\left[y_{1} y_{2}\right](t)} d t
$$

where $g(t)=t^{2} e^{t}=W\left[y_{1}, y_{2}\right](t)$

$$
\begin{aligned}
Y(t) & =-t \int t e^{t} d t+\operatorname{te} t \int t d t \\
& =-t\left(6 e^{t}-e^{t}+C_{1}\right)+b e t\left(\frac{1}{2} t^{2}+C_{2}\right)
\end{aligned}
$$

where C_{1} and C_{2} are constants which

Integration by parts grins:

we can fro bo le equal to 0
So a particular solution is

$$
y(t)=t e^{t}-t^{2} e^{t}+\frac{1}{2} t^{3} e^{t}
$$

Since tet is a solution of the associated homogeneous equation,

$$
y_{0}(t)=-t^{2} e^{t}+\frac{1}{2} t^{3} e^{t}
$$

is condther particular odution.
(e) Determine the general solution of (1).

The general odutron of (1) is the sum of the geneal odutron of the assocva bed homogeneous equation and a particular solution of (1). Hence is is $\quad y(t)=C_{1} t+C_{2} t e^{t}-t^{2} e^{t}+\frac{1}{2} t^{3} e^{t}, C_{1}, C_{2}$ constants, $t>0$

Exercise 2 [$3+1+1+1$ points]
Consider the system of linear DE's $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ where $\mathbf{x}(t)=\binom{x_{1}(t)}{x_{2}(t)}$ and $\mathbf{A}=\left(\begin{array}{ll}5 & -3 \\ 3 & -5\end{array}\right)$.
(a) Find the general solution.

Characteristic equation of A : $\operatorname{det}(A-\lambda I)=0$, i,,$\left|\begin{array}{cc}5-\lambda-3 \\ 3 & -5-\lambda\end{array}\right|=0$, ice. $\overbrace{(\lambda+5)(\lambda-5)}^{\lambda^{2}-25}+9=0$ i.e. $\lambda^{2}-16=0$. The eigenvalues of A are hence $\lambda_{1}=41 \lambda_{2}=-4$.

Eigenvedars for $\lambda_{1}=4$: $(A-4 I)\binom{v_{1}}{v_{2}}=\left(\begin{array}{cc}1 & -3 \\ 3 & -9\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{0}{0} \Leftrightarrow v_{1}-3 v_{2}=0 \Leftrightarrow\binom{v_{1}}{v_{2}}=v_{2}\binom{3}{1}$ $\mathcal{F} x \quad v_{1}=\binom{3}{1}$
Egernocbors for $\lambda_{2}=-4$: $(A+4 I)\binom{v_{1}}{v_{2}}=\left(\begin{array}{ll}9 & -3 \\ 3 & -1\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{0}{0} \Leftrightarrow 3 v_{1}-v_{2}=0 \Leftrightarrow\binom{v_{1}}{v_{2}}=v_{1}\binom{1}{3}$ $F i x \quad V_{2}=\binom{1}{3}$
The matrix e A is non-defectivre because it has two distimet real eigenvalues. The general solution of $x^{\prime}=A x$ is therefore

$$
x(t)=C_{1} e^{4 t}\binom{3}{1}+C_{2} e^{-4 t}\binom{1}{3}, \quad C_{1} C_{2} \text { constants, } \quad \in \in \mathbb{R}
$$

(b) Determine the equilibrium point, identify its type and determine its stability.
$x^{\prime}=A x$ is a homogeneous systern of list ordve linear DE's with $\operatorname{det}(A)=\left|\begin{array}{cc}5-3 \\ 3 & -5\end{array}\right|=-25+9=-16 \neq 0$. The syotem $A x=0$ has therefore unique solution $x=0$. Thus $(0,0)$ is the unique equlihum odutrom. A has two real evgenralues of opposite signs. The equililium odutron is then a saddle and it is unstable.

Exercise 2 (continued)
(c) Pick one of the two eigenvalues of \mathbf{A} you determined in (a) and call it λ. Find an eigenvector \mathbf{v} of \mathbf{A} for the eigenvalue λ so that the solution $\mathbf{x}(t)=e^{\lambda t} \mathbf{v}$ has first component equal to 1 at $t=0$.

Jependirig on the choir of λ, two answers are possible:

- If we choose $\lambda_{2}=-4$ and $v_{2}=\binom{1}{3}$, then for any constant $C \neq 0$, the vector $C v_{2}$ is an engenvedia of A for the eigenvalue $\lambda_{2}=-4$. Set $x(t)=\binom{x_{1}(t)}{x_{2}(t)}$. We hare to determine the value of C so that $f a r(t)=C e^{-4 t}\binom{1}{3}$ we have $x_{1}(0)=1$, i.e. $C e^{0}=1$. Thus $C=1$ and $v=v_{2}=\binom{1}{3}$
- If we choose $\lambda_{1}=4$ and $\boldsymbol{N}_{1}=\binom{3}{1}$, then fa any $C \neq 0$ the vector $C N_{1}$ is an eigenvector of A, the given condition is that for $x(t)=C e^{4 t}\binom{3}{1}$ we have $x_{1}(0)=1$. Thus $1=3 C$, youlding $c=\frac{1}{3}$ and $v=\frac{1}{3} w_{1}=\binom{1}{1 / 3}$.
(d) Let $\mathbf{x}(t)=e^{\lambda t} \mathbf{v}$ the solution you determined in (c). Sketch its trajectory in the phase plane. (Do not forget to indicate by an arrowhead the direction of motion along the trajectory).
sepundering on your choice of λ in exercise 2(c), there are bis possithe answers:
- If $x(t)=e^{-4 t}\binom{1}{3}$: since $\frac{x_{2}(t)}{x_{1}(t)}=\frac{3 e^{-4 t}}{e^{-4 t}}=3$, the trajectory of this soutron lies an the line $x_{2}=3 x_{1}$. Since $\left\{x_{1}(t)=e^{-4 t} ; t \in \mathbb{R}\right\}=(0,+\infty)$ and $\lim _{t \rightarrow+\infty} x_{1}(t)=0$, the trajectory is the half-line with $x_{1}>0$ [in I st quadrant] on $x_{2}=3 x_{1}$ auented towards $(0,0)$:

- If $x(t)=e^{4 t}\binom{1}{1 / 3}$, then $\frac{x_{2}}{x_{1}}=\frac{1}{3}$ and the trajectory
 would te on $x_{2}=\frac{1}{3} x_{1}$; the half-line in $x_{1}>0$, curbed away from $(0,0)$

Exercise 3 [$1+3+3+1$ points]
A mass of 2 kg is hung from a spring of spring constant $k=1.85 \mathrm{~N} / \mathrm{m}$. Suppose that it is also attached to a viscous damper that exerts a force of 0.03 N when the velocity of the mass is $0.05 \mathrm{~m} / \mathrm{s}$. The mass is pulled down 0.1 m below its equilibrium position and then released. Suppose that there is no external force.
(a) Determine the damping coefficient γ.

$$
\gamma=\frac{0.03}{0.05} \frac{\mathrm{~N}}{\mathrm{~m} / \mathrm{s}}=\frac{3}{5} \frac{\mathrm{Ns}}{\mathrm{~m}}
$$

(b) Write down the appropriate initial value problem that governs the motion of the mass.

The motion of a mass in a dumped unfoece speeng-mass system is diocretred by the DE: $\quad m y^{\prime \prime}+\gamma y^{\prime}+R y=0$
where $y=y(t)$ is the positron of the mass along a vertreal y-axis, with the positive direction dowmusard and with the ougrm at the equilihuum positron of the mass.

Thus the motron satrofie's the IVP

$$
2 y^{\prime \prime}+\frac{3}{5} y^{\prime}+1.85 y=0, \quad y(0)=0.1, y^{\prime}(0)=0
$$

Exercise 3 (continued)
(c) Solve the initial value problem and find the position of the mass at any time t.

$$
\begin{aligned}
& 2 y^{\prime \prime}+\frac{3}{5} y^{\prime}+1.85 y=0, y(0)=0.1, y^{\prime}(0)=0 \\
& 10 y^{\prime \prime}+3 y^{\prime}+9.25 y=0
\end{aligned}
$$

Characteristic equation: $10 \lambda^{2}+3 \lambda+9.25=0$,
Its roots are $\lambda=\frac{-3 \pm \sqrt{9-370}}{20}=\frac{-3 \pm \sqrt{-361}}{20}=\frac{-3 \pm 19 i}{20}$
The general outran is therefore $y(t)=e^{-3 / 20 t}\left[C_{1} \cos \left(\frac{19}{20} t\right)+C_{2} \sin \left(\frac{19}{20} t\right)\right]$ where C_{1}, C_{2} are constants which we fro using the initial condetrons. drotice that

$$
y^{\prime}(t)=-\frac{3}{20} e^{-\frac{3}{20} t}\left[C_{1} \cos \left(\frac{19}{20} t\right)+C_{2} \sin \left(\frac{19}{20} t\right)\right]+\frac{19}{20} e^{-\frac{3}{20} t}\left[-c_{1} \sin \left(\frac{19}{20} t\right)+c_{2} \cos \left(\frac{19}{20} t\right)\right]
$$

Fence $\left\{\begin{array}{l}0,1=y(0)=C_{1} \\ 0=y^{\prime}(0)=-\frac{3}{20} C_{1}+\frac{19}{20} C_{2}\end{array}\right.$, i.e. $\quad\left\{\begin{array}{l}C_{1}=0.1=\frac{1}{10} \\ C_{2}=\frac{3}{19} C_{1}=\frac{3}{190}\end{array}\right.$
The position of the mass at time t (in m) is

$$
y(t)=\frac{1}{10} e^{-3 / 20 t}\left[\cos \left(\frac{19}{20} t\right)+\frac{3}{19} \sin \left(\frac{19}{20} t\right)\right]
$$

(d) Determine the quasi-period of the motion.

The quasu-frequence is $\nu=\frac{19}{20}$. So the quasi-period is

$$
T=\frac{2 \pi}{\nu}=\frac{40}{19} \pi \sim 6.61 \quad(\text { in sec. })
$$

