Georgia Tech - Lorraine
Fall 2019
Differential Equations
Math 2552
8/29/2019

Last Name:
First Name:

EX	
1	
2	
TOT	

Quiz $n^{0} 1(20$ minutes $)$

Show your work and justify your answers. Calculators, notes, cell phones, books are not allowed. Please do not use red or pink ink. Maximum: 20 points

Exercise 1 ($4+3+3$ points) .

The liquid base of an ice cream at initial temperature of $30^{\circ} \mathrm{C}$ is placed in a freezer with constant temperature $-20^{\circ} \mathrm{C}$. Assume that Newton's law of cooling applies with transmission factor $k=$ 0.5 hours $^{-1}$.
(a) Write an initial value problem (IVP) that models the temperature of the liquid as a function of time.
Solution: Set:
$t=$ time (in hours)
$u(t)=$ temperature (in degrees C) of the liquid at the time t
$u(0)=$ initial temperature of the liquid $=30^{\circ} \mathrm{C}$
$T_{0}=$ temperature of the freezer $=-20^{\circ} \mathrm{C}$
By Newton's law of cooling with transmission factor $k=0.5$ hours $^{-1}$ we obtain the IVP

$$
\frac{d u}{d t}=-k\left(u-T_{0}\right)=-0.5(u+20), \quad u(0)=30
$$

(b) Solve the IVP and determine a formula for the temperature of the liquid as a function of time.

Solution: The constant function $u=-20^{\circ} \mathrm{C}$ is a solution of the DE , but not the solution we are looking for, as $u(0)=30^{\circ}$ C. Suppose then $u \neq-20$. Divide both sides of the DE by $u+20$ and get:

$$
\frac{1}{u+20} \frac{d u}{d t}=-0.5
$$

Integrate with respect to t :

$$
\int \frac{1}{u+20} \frac{d u}{d t} d t=-0.5 \int d t \quad \text { i.e. } \quad \int \frac{1}{u+20} d u=-0.5 \int d t
$$

and obtain $\ln |u+20|=-0.5 t+C_{0}$ (where C_{0} is a constant). Exponentiating gives the general solution $u(t)=-20+C e^{-0.5 t}$ (where C is a constant).
We determine C from the initial condition $u(0)=30$ by inserting $t=0$ in the general solution: $30=u(0)=-20+C$ gives $C=50$.
Conclusion: $u(t)=-20+50 e^{-0.5 t}$ (in degrees C).
(c) Suppose the ice cream is ready when it reaches the temperature of $0^{\circ} \mathrm{C}$. How long will it take to be ready? (Leave your answer in term of \ln)
Solution: We look for the time t_{0} for which $u\left(t_{0}\right)=0^{\circ} \mathrm{C}$:

$$
0=u\left(t_{0}\right)=-20+50 e^{-0.5 t_{0}} \quad \text { yields } \quad 5 e^{-0.5 t_{0}}=2, \quad \text { i.e. } \quad e^{0.5 t_{0}}=\frac{5}{2}
$$

. Thus: $0.5 t_{0}=\ln \left(\frac{5}{2}\right)$, i.e. $t_{0}=2 \ln \left(\frac{5}{2}\right)$ hours.

Exercise $2(3+2+5$ points) . The differential equation

$$
\frac{d y}{d t}=e^{y^{2}}-1
$$

is of the form $\frac{d y}{d t}=f(y)$ with $f(y)=e^{y^{2}}-1$
(a) Sketch the graph of $f(y)$ versus y

Solution:

(b) Determine the equilibrium point(s).

Solution: $f(y)=0$ if and only if $y=0$. So $y=0$ is the unique equilibrium point.
(c) Draw the phase line and classify the equilibrium point(s) as asymptotically stable, unstable, or semistable. Sketch graphs of solutions in the $t y$-plane on either sides of each equilibrium point.

Solution:

$y^{\prime}=f(y)>0$ for all $y \neq 0$.
The equilibrium point $y=0$ is semistable.

phase line

