Georgia Tech - Lorraine Fall 2019
Differential Equations
Math 2552
8/29/2019

EX	
1	
2	
TOT	

Quiz $n^{0} 1(20$ minutes $)$

Show your work and justify your answers. Calculators, notes, cell phones, books are not allowed. Please do not use red or pink ink. Maximum: 20 points

Exercise 1 ($4+3+3$ points) .
The liquid base of an ice cream at initial temperature of $30^{\circ} \mathrm{C}$ is placed in a freezer with constant temperature $-20^{\circ} \mathrm{C}$. Assume that Newton's law of cooling applies with transmission factor $k=$ 0.5 hours $^{-1}$.
(a) Write an initial value problem (IVP) that models the temperature of the liquid as a function of time.
(b) Solve the IVP and determine a formula for the temperature of the liquid as a function of time.
(c) Suppose the ice cream is ready when it reaches the temperature of $0^{\circ} \mathrm{C}$. How long will it take to be ready? (Leave your answer in term of \ln)

Exercise $2(3+2+5$ points) . The differential equation

$$
\frac{d y}{d t}=e^{y^{2}}-1
$$

is of the form $\frac{d y}{d t}=f(y)$ with $f(y)=e^{y^{2}}-1$
(a) Sketch the graph of $f(y)$ versus y
(b) Determine the equilibrium point(s).
(c) Draw the phase line and classify the equilibrium point(s) as asymptotically stable, unstable, or semistable. Sketch graphs of solutions in the $t y$-plane on either sides of each equilibrium point.

