Georgia Tech - Lorraine
Fall 2019
Differential Equations
Math 2552
10/10/2019

Last Name:
First Name:

EX	
1	
2	
TOT	

Quiz n $^{0} 3$ (20 minutes)

Show your work and justify your answers. Calculators, notes, cell phones, books are not allowed. Please do not use red or pink ink. Maximum: 20 points

Exercise $1(2+\mathbf{3}+\mathbf{2}+\mathbf{3}$ points $)$.
Consider the system of differential equations $\left\{\begin{array}{l}\frac{d x}{d t}=-x+1 \\ \frac{d y}{d t}=-2 y\end{array}\right.$
(a) Suppose $x \neq 1$. Determine a first order differential equation for y as a function of x.

$$
\frac{d y}{d t}=\frac{d y}{d x} \frac{d x}{d t} \text {. Hence, if } \frac{d x}{d t} \neq 0 \text {, live, } x \neq 1 \text {, we hare } \frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{2 y}{x-1}
$$

(b) Solve the differential equation in (a) and determine a function $H(x, y)$ such that every solution satisfies an equation of the form $H(x, y)=C$, where C is a constant.
(Write $H(x, y)$ so that is does not contain any logarithmic terms.)
$\frac{d y}{d x}=\frac{2 y}{x-1}$. If $y \neq 0$, then $\frac{1}{y} \frac{d y}{d x}=2 \frac{1}{x-1}$ (separable first order $D E$)
Integrate eth sides wit x and substitute $d y=\frac{d y}{d x} d x ; \quad \int \frac{1}{y} d y=2 \int \frac{1}{x-1} d x$
i.e. $\ln |y|=2 \ln |x-1|+C_{1}=\ln \left((x-1)^{2}\right)+C_{1}$ with C_{1} constant. Expomentratring, we obtain: $|y|=e^{C_{1}}(x-1)^{2}$, ie. $y= \pm e^{C_{1}}(x-1)^{2}$, so; $y=C(x-1)^{2}$ where C is an archtrany constant ($C=0$ allows the solution $y=0$ too) Thus $H(x, y)=\frac{y}{(x-1)^{2}}$
(c) Describe the level curves of the function $H(x, y)$ and sketch some of them.
$H(x, y)=C \Leftrightarrow y=C(x-1)^{2}$
For $C \neq 0$, this is a family of parabolas with common vertex $\left(x_{v}, y_{v}\right)=(1,0)$
This are concave up for $C>0$ and concave down for $C<0$
They intersect the y-axons at ($0, C$).
The level curve for $C=0$ is the lone $y=0$ (the x-acis)

(d) For $t>0$, sketch the trajectory corresponding to the initial condition $x(0)=2$ and $y(0)=-2$ and indicate the direction of motion for increasing t.
(Sketch the trajectory only and not the level curve to which it belongs.)
$C=H(2,-2)=-2 \Rightarrow y=-2(x-1)^{2}$
As $t>0$ increases, the x value decreases to 1 and the y value increases to 0 .

Exercise $2(2+4+2+2$ points) .
A 1-kilogram mass stretches a spring 20 cm . The mass is pulled down 5 cm below its equilibrium position and given an initial upward velocity of $10 \mathrm{~cm} / \mathrm{s}$. Assume that there is no damping and recall that $g=9.8 \mathrm{~m} / \mathrm{sec}^{2}$
(a) Determine the spring constant of this spring.

The poring and the gearitatronal force freelance each dffurs when the man is at equilinuum, ie. $m g-k L=0$, where: $m=1 \mathrm{~kg}, g=9.8 \mathrm{~m} / \mathrm{sec}^{2} L=$ extension of the sprig from natural length to equehuum position $=20 \mathrm{~cm}=0.2 \mathrm{~m}, k=$ strung constant Hence $k=\frac{1.9 .8}{0.2}=49 \mathrm{~kg} / \mathrm{sec}^{2}=49 \mathrm{~N} / \mathrm{m}$
(b) Write an initial value problem (IVP) that models the motion of the mass.
(Choose a downward-pointing coordinate axis with origin at the equilibrium position. Do not solve this IVP)

The equation of motion is:
$m y^{\prime \prime}+k y=0$ i.e. $y^{\prime \prime}+49 y=0$
with initial conditions

$$
y(0)=0.05 \mathrm{~m}, y^{\prime}(0)=-0.1 \mathrm{~m} / \mathrm{sec}
$$

(c) Introduce state variables and convert the IVP of (b) into an IVP for a system of two first-order linear differential equations. Use matrix notation.
(Do not solve this IVP)
state vanalles

$$
\begin{aligned}
& x_{1}=y \\
& x_{2}=y^{\prime}
\end{aligned} \Rightarrow\left\{\begin{array} { l }
{ x _ { 1 } ^ { \prime } = \quad x _ { 2 } } \\
{ x _ { 2 } ^ { \prime } = - 4 9 } \\
{ x _ { 1 } }
\end{array} \quad \text { with initial candutron } \left\{\begin{array}{l}
x_{1}[0)=0,05 \\
x_{2}(0)=-0.1
\end{array}\right.\right.
$$

Matrix motatrom: $x^{\prime}=\left(\begin{array}{cc}0 & 1 \\ -49 & 0\end{array}\right) x$ with initial comdutron

$$
\begin{equation*}
x(0)=\binom{0.05}{-0.1} \tag{A}
\end{equation*}
$$

(d) Will the system oscillate indefinitely? Explain.
(A mathematical argument is expected.)
The charactristro equation of A is $\operatorname{det}(A-\lambda I)=0$, le. $\lambda^{2}+49=0$, i.e. $\lambda=57 i$ so A has two complex conjugate purely umagimary eigenvalues. This yields a periodic solution. Therefore the syotern will oscillate indefrovitely.

