Georgia Tech - Lorraine
Fall 2019
Differential Equations
Math 2552
10/10/2019

| Last Name: |
| :--- | :--- | :--- |
| First Name: |\quad| EX | |
| :---: | :---: |
| 1
 2
 TOT | |

Quiz $\mathrm{n}^{0} 3$ (20 minutes)

Show your work and justify your answers. Calculators, notes, cell phones, books are not allowed. Please do not use red or pink ink. Maximum: 20 points

Exercise $1(2+\mathbf{3}+\mathbf{2}+\mathbf{3}$ points $)$.
Consider the system of differential equations $\left\{\begin{array}{l}\frac{d x}{d t}=-x+1 \\ \frac{d y}{d t}=-2 y\end{array}\right.$
(a) Suppose $x \neq 1$. Determine a first order differential equation for y as a function of x.
(b) Solve the differential equation in (a) and determine a function $H(x, y)$ such that every solution satisfies an equation of the form $H(x, y)=C$, where C is a constant.
(Write $H(x, y)$ so that is does not contain any logarithmic terms.)
(c) Describe the level curves of the function $H(x, y)$ and sketch some of them.
(d) For $t>0$, sketch the trajectory corresponding to the initial condition $x(0)=2$ and $y(0)=-2$ and indicate the direction of motion for increasing t.
(Sketch the trajectory only and not the level curve to which it belongs.)

Exercise $2(2+4+2+2$ points) .

A 1-kilogram mass stretches a spring 20 cm . The mass is pulled down 5 cm below its equilibrium position and given an initial upward velocity of $10 \mathrm{~cm} / \mathrm{s}$. Assume that there is no damping and recall that $g=9.8 \mathrm{~m} / \mathrm{sec}^{2}$
(a) Determine the spring constant of this spring.
(b) Write an initial value problem (IVP) that models the motion of the mass.
(Choose a downward-pointing coordinate axis with origin at the equilibrium position. Do not solve this IVP)
(c) Introduce state variables and convert the IVP of (b) into an IVP for a system of two first-order linear differential equations. Use matrix notation.
(Do not solve this IVP)
(d) Will the system oscillate indefinitely? Explain. (A mathematical argument is expected.)

