Georgia Tech – Lorraine Fall 2019 Differential Equations Math 2552 10/24/2019

	EX	
Last Name:	1	
First Name:	2	
	TOT	

Quiz n^0 4 (20 minutes)

Show your work and justify your answers. Calculators, notes, cell phones, books are not allowed. Please do not use red or pink ink. Maximum: 20 points

Exercise. [Each of the questions (a),(b),(c),(d) and (e) below is worth 4 points.] An object of mass m = 0.2 kg is hung from a spring with spring constant k = 40 N/m. The object is subject to a damping with damping coefficient $\gamma = 4$ Ns/m.

(a) Suppose first that there is no external force acting on the spring-mass system.

Set up the differential equation of the motion.

(Choose the equilibrium point as the origin of a downward-pointing y-coordinate axis.)

The DE of the motion is: my'' + y' + ky = 0i.e. 0.2y'' + 4y' + 40y = 0i.e. y'' + 20y' + 200y = 0

(b) Determine the general solution of the differential equation you found in part (a).

The characteristic equation
$$\lambda^2 + 20\lambda + 200 = 0$$
 has roots
 $\lambda = -10 \pm \sqrt{100 - 200} = -10 \pm i \cdot 10 = 10(-1 \pm i)$ (complex conjugate roots)
A fundamential system of real-valued solutions is $y_i(t) =$
 $= e^{-10t} \cos(10t)$ and $y_2(t) = e^{-10t} \sin(10t)$. The general solution is
 $y(t) = C_i e^{-10t} \cos(10t) + C_i e^{-10t} \sin(10t)$, where $C_{i_1}C_i$ are artifrary constants.

(c) Suppose that at time t = 0 the mass is pulled down 0.5 m below its equilibrium position and then released (i.e. the initial velocity is 0).

Determine the motion y(t) of the mass as a function of the time t.

We differmine the nature of the constants C_1, C_2 in (1) using the initial conditions: y(c) = 0.5 m, y'(0) = 0 m/s.We have $y(t) = e^{-10t} (C_1 \cos(10t) + C_2 \sin(10t)),$ Hence $y'(t) = -10 e^{-10t} (C_1 \cos(10t) + C_2 \sin(10t)) + e^{-10t} (-10C_1 \sin(10t) + 10 C_2 \cos(10t))$ So $\begin{cases} 0.5 = y(0) = C_1, & i.e. \\ 0 = y'(0) = -10C_1 + 10C_2, & C_2 = 0.5 \end{cases}$ Thus $y(t) = \frac{1}{2}e^{-10t} (\cos(10t) + \sin(10t)).$

 $Please \ turn \longrightarrow$

(d) The following two questions consider the motion from a qualitative point of view:

(d1) Can the function y(t) be written in the form $y(t) = h(t) \cos(\nu t - \delta)$ for a suitable function h(t) and suitable constants ν and δ ? If so, determine h(t), ν and δ .

Recall that
$$\cos(\frac{\pi}{4}) = tim(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$$
 and $\cos(\alpha - \beta) = \cos\alpha \cos\beta - tim\alpha tim\beta$, So
 $y(t) = \frac{1}{2}e^{-10t}(\cos(10t) + tim(10t)) = \frac{\sqrt{2}}{2}e^{-10t}(\frac{\sqrt{2}}{2}\cos(10t) + \frac{\sqrt{2}}{2}sim(10t))$
 $= \frac{\sqrt{2}}{2}e^{-10t}\cos(10t - \frac{\pi}{4})$. Shus $y(t)$ can to zoubten in the requested
form with $h(t) = \frac{\sqrt{2}}{2}e^{-10t}$, $v = 10$, $\delta = \frac{\pi}{4}$,
(d2) What is the behavior of $y(t)$ as t increases?

$$\lim_{t \to +\infty} y(t) = 0 \text{ because } \lim_{t \to +\infty} e^{-10t} = 0 \text{ and } t \to \cos(10t - \frac{\pi}{4}) \text{ is } t \to +\infty$$
founded, with $|\cos(10t - \frac{\pi}{4})| \le 1$ for all t.

(e) Suppose now that the mass-spring system is subject to a periodic force $F(t) = 100 \sin(20t)$ N. Explain (*without computing it!*) how one can find a steady-state solution. Your explanation must include an initial guess for the particular solution.

Ohe DE of the moderan is more
$$y'' + 20y' + 200y = 100 \text{ stm}(20t)$$
. It is
a 9^{md} actual limitate DE with monhomogeniaus term $g(t) = 100 \text{ stm}(20t)$
The associated homogeniaus equation $y'' + 20y' + 200y = 0$ has constant
calfricients and it is not solved by the function $g(t)$. We can
threefore find a steady-state solution of the given monhomogenious DE
by the method of undetermined coefficients with initial guess
 $\chi(t) = A\cos(30t) + B\sin(30t)$. The combants A and B are determined
by insecting $\chi_{\mu}(t), \chi_{\mu}'(t), \forall_{\mu}''(t)$ into the DE and matching the coefficients
of the form $\chi = \cos(30t)$ in the resulting equation.
Equivalently, we look of a particular adultion of $y'' + 20y' + 200y = 100e^{20tt}$
of the form $\chi = Ce^{20tt}$. We determine C by insecting $\chi(t), \chi'(t), \chi''(t)$
in the DE, and finally $\chi_{\mu}(t) = \text{Im } \chi(t)$ is a steady-otate solution
of the initial DE.

•