Georgia Tech - Lorraine
Fall 2019
Differential Equations
Math 2552
10/24/2019

Last Name:
First Name:

EX	
1	
2	
TOT	

Quiz $\mathrm{n}^{0} 4$ (20 minutes)

Show your work and justify your answers. Calculators, notes, cell phones, books are not allowed. Please do not use red or pink ink. Maximum: 20 points

Exercise. [Each of the questions (a),(b),(c),(d) and (e) below is worth 4 points.] An object of mass $m=0.2 \mathrm{~kg}$ is hung from a spring with spring constant $k=40 \mathrm{~N} / \mathrm{m}$. The object is subject to a damping with damping coefficient $\gamma=4 \mathrm{Ns} / \mathrm{m}$.
(a) Suppose first that there is no external force acting on the spring-mass system.

Set up the differential equation of the motion.
(Choose the equilibrium point as the origin of a downward-pointing y-coordinate axis.)
The DE of the motion is: $m y^{\prime \prime}+\gamma y^{\prime}+k y=0$
i.e. $\quad 0.2 y^{\prime \prime}+4 y^{\prime}+40 y=0$
lie. $\quad y^{\prime \prime}+20 y^{\prime}+200 y=0$
(b) Determine the general solution of the differential equation you found in part (a).

The charactereitice equation $\lambda^{2}+20 \lambda+200=0$ has roots
$x=-10 \pm \sqrt{100-200}=-10 \pm i 10=10(-1 \pm i) \quad$ (complex conjugate roots)
A fundamental system of real-valued slutrons is $y_{1}(t)=$ $=e^{-10 t} \cos (10 t)$ and $y_{2}(t)=e^{-10 t} \sin (10 t)$. The general solution is $y(t)=C_{1} e^{-10 t} \cos (10 t)+C_{2} e^{-10 t} \sin (10 t)$, where C_{1}, C_{2} are artirary constants.
(c) Suppose that at time $t=0$ the mass is pulled down 0.5 m below its equilibrium position and then released (ie. the initial velocity is 0).
Determine the motion $y(t)$ of the mass as a function of the time t.
We determine the value of the carnotants C_{1}, C_{2} in (t) using the initial conditions: $y(0)=0.5 \mathrm{~m}, y^{\prime}(0)=0 \mathrm{~m} / \mathrm{s}$.
We have $y(t)=e^{-10 t}\left(C_{1} \cos (10 t)+C_{2} \sin (10 t)\right)$.
Hence $y^{\prime}(t)=-10 e^{-10 t}\left(c_{1} \cos (10 t)+c_{2} \sin (10 t)\right)+e^{-10 t}\left(-10 c_{1} \sin (10 t)+10 c_{2} \cos (10 t)\right)$
So

$$
\left\{\begin{array} { r l }
{ 0 . 5 } & { = y (0) = c _ { 1 } } \\
{ 0 } & { = y ^ { \prime } (0) = - 1 0 c _ { 1 } + 1 0 c _ { 2 } }
\end{array} \quad \text { i.e. } \left\{\begin{array}{l}
c_{1}=0,5 \\
c_{2}=c_{1}=0,5
\end{array}\right.\right.
$$

Thus $y(t)=\frac{1}{2} e^{-10 t}(\cos (10 t)+\sin (10 t))$.
(d) The following two questions consider the motion from a qualititative point of view:
(di) Can the function $y(t)$ be written in the form $y(t)=h(t) \cos (\nu t-\delta)$ for a suitable function $h(t)$ and suitable constants ν and δ ? If so, determine $h(t), \nu$ and δ.
Recall that $\cos \left(\frac{\pi}{4}\right)=\sin \left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}$ and $\cos (\alpha-\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta, \sin _{0}$

$$
y(t)=\frac{1}{2} e^{-10 t}(\cos (10 t)+\sin (10 t))=\frac{\sqrt{2}}{2} e^{-10 t}\left(\frac{\sqrt{2}}{2} \cos (10 t)+\frac{\sqrt{2}}{2} \sin (10 t)\right)
$$

$=\frac{\sqrt{2}}{2} e^{-10 t} \cos \left(10 t-\frac{\pi}{4}\right)$. Thus $y(t)$ can be written in the requested form with $h(t)=\frac{\sqrt{2}}{2} e^{-10 t}, \nu=10, \delta=\frac{\pi}{4}$.
(d2) What is the behavior of $y(t)$ as t increases?
$\lim _{t \rightarrow+\infty} y(t)=0$ because $\lim _{t \rightarrow+\infty} e^{-10 t}=0$ and $t \rightarrow \cos \left(10 t-\frac{\pi}{4}\right)$ is rounded, with $\left|\cos \left(10 t-\frac{\pi}{4}\right)\right| \leqslant 1$ for all t.
(e) Suppose now that the mass-spring system is subject to a periodic force $F(t)=100 \sin (20 t) \mathrm{N}$. Explain (without computing it!) how one can find a steady-state solution. Your explanation must include an initial guess for the particular solution.
The DE of the matron is mow $y^{\prime \prime}+20 y^{\prime}+200 y=100 \mathrm{sim}(20 \mathrm{t})$. It is $c 2^{\text {nd }}$ ode leniar DE with nonhomogeneous 6 arm $g(t)=100 \sin (20 t)$ The associated homogeneous equation $y^{\prime \prime}+20 y^{\prime}+200 y=0$ has constant coefficients and it is not served by the function $g(t)$. We can therefore frond a steady-stabe solution of the graven nonhomogenous DE by the methat of undetermined coefficients with initial guess $y_{r}(t)=A \cos (30 t)+B \operatorname{srm}(30 t)$, The constants A and B are debermened by inserting $y_{r}(t), Y_{p}^{\prime}(t), y_{p}^{\prime \prime}(t)$ into the $D E$ and matching the coefficients of $\sin (30 t)$ and $\cos (30 t)$ in the resulting equation.

- Equiralintly, we look of a particular station of $y^{\prime \prime}+20 y^{\prime}+200 y=100 e^{20 i t}$ of the form $y=C e^{20 u t}$. We determine C by unserebing $Y(t), y^{\prime}(t), y^{\prime \prime}(t)$ in the $D E$, and formally $Y_{n}(t)=\operatorname{Im} Y(t)$ is a sbeady-otate olutrom of the imitual $D E$.

