Georgia Tech - Lorraine
Fall 2019
Differential Equations
Math 2552
10/24/2019

Quiz $\mathrm{n}^{0} 4$ (20 minutes)

Show your work and justify your answers. Calculators, notes, cell phones, books are not allowed. Please do not use red or pink ink. Maximum: 20 points

Exercise. [Each of the questions (a),(b),(c),(d) and (e) below is worth 4 points.] An object of mass $m=0.2 \mathrm{~kg}$ is hung from a spring with spring constant $k=40 \mathrm{~N} / \mathrm{m}$. The object is subject to a damping with damping coefficient $\gamma=4 \mathrm{Ns} / \mathrm{m}$.
(a) Suppose first that there is no external force acting on the spring-mass system.

Set up the differential equation of the motion.
(Choose the equilibrium point as the origin of a downward-pointing y-coordinate axis.)
(b) Determine the general solution of the differential equation you found in part (a).
(c) Suppose that at time $t=0$ the mass is pulled down 0.5 m below its equilibrium position and then released (i.e. the initial velocity is 0).
Determine the motion $y(t)$ of the mass as a function of the time t.
(d) The following two questions consider the motion from a qualititative point of view:
(d1) Can the function $y(t)$ be written in the form $y(t)=h(t) \cos (\nu t-\delta)$ for a suitable function $h(t)$ and suitable constants ν and δ ? If so, determine $h(t), \nu$ and δ.
(d2) What is the behavior of $y(t)$ as t increases?
(e) Suppose now that the mass-spring system is subject to a periodic force $F(t)=100 \sin (20 t) \mathrm{N}$. Explain (without computing it!) how one can find a steady-state solution. Your explanation must include an initial guess for the particular solution.

