Georgia Tech - Lorraine
Spring 20
Differential Equations
Math 2552
16/1/2020

Last Name:
First Name:

Quiz $\mathrm{n}^{0} 1$ (20 minutes)

Show your work and justify your answers. Calculators, notes, cell phones, books are not allowed. Please do not use red or pink ink. Maximum: 20 points

Exercise $1(4+3+3$ points) .
The temperature of a cake when it is removed from the oven is $150^{\circ} \mathrm{C}$. The cake is left in a room at the constant temperature of $20^{\circ} \mathrm{C}$. Five minutes later its temperature is $80^{\circ} \mathrm{C}$.
Assume that Newton's law of cooling applies with transmission factor $k\left(\right.$ in $\left.\mathrm{min}^{-1}\right)$.
(a) Write an initial value problem (IVP) that models the temperature of the cake as a function of time. (You need not determine the value of k.)
Set: $t=$ time (in min); $t=0$ when the cake removed from the oven $u(t)=$ temperature of the cake at the time $t\left(\mathrm{im}^{\circ} \mathrm{C}\right) ; u(0)=150^{\circ} \mathrm{C}$ $T=$ room temperature $=20^{\circ} \mathrm{C}$
By dreuton's law of cooling with branomurrom factor k, the temperature of the cake is modeled by the IVP

$$
\frac{d u}{d t}=-k(u-20) \text { with } u(0)=150
$$

(b) Solve the IVP and determine a formula for the temperature of the cake as a function of the time t and of the transmission factor k.
(Do not determine the value of k.)
$\frac{d u}{d u}=-k(u-20)$ is a 1 st oder separate DE. $u=20$ is its unique constant solution. If $u \neq 20$, can divide both sudus by $u-20$ and get: $\frac{1}{u-20} \frac{d u}{d t}=-k$ Integrate both sides wet t and recall that $\frac{d u}{d t} d t=d u$ $\int \frac{1}{u-20} \frac{d u}{d t} d t=-k \int d t$, i.e. $\int \frac{1}{u-20} d u=-k \int d t$, which yields $\ln |u-20|=-k t+C_{0}$, Espromintiate to th odes; $|u-20|=e^{c_{0}} e^{-k t}$, i.e. $u-20= \pm e^{c_{0}} e^{-k t} \quad C_{0}$ constant Hence $u(t)=20+c e^{-k t}, c=$ arhibrary real constant (equal to $5 e^{c_{0}}$ if $u \neq 20$, and 60 $150=u(0)=20+C$. So $C=130$. Thus $u(t)=20+130 e^{-k t}$

$$
c=0 \text { for the constant solution } u=20 \text {) }
$$

(c) Determine the value of the k (in min^{-1}).
(Leave your answer in term of \ln)
The measurement $u(5)=80^{\circ} \mathrm{C}$ yields
$80=20+130 e^{-5 k}$, i.e. $\frac{6}{13}=e^{-5 k} \Rightarrow e^{5 k}=\frac{13}{6}$, ire. $k=\ln \left(\frac{13}{6}\right) \cdot \frac{1}{5}$

Exercise $2(3+2+5$ points) . The differential equation

$$
\frac{d y}{d t}=y(y-2)
$$

is of the form $\frac{d y}{d t}=f(y)$ with $f(y)=y(y-2)$.
(a) Sketch the graph of $f(y)$ versus y.

$$
f(y)=y(y-2)
$$

(b) Determine the equilibrium points).

$$
\begin{aligned}
& f(y)=0 \Leftrightarrow y=0 \text { or } y=2 \text {. } \\
& \text { The equlihum points (= constant odutions) are therefor }
\end{aligned}
$$

$$
y=0 \text { and } y=2 \text {. }
$$

(c) Draw the phase line and classify the equilibrium points) as asymptotically stable, unstable, or semistable. For $t \geq 0$, sketch graphs of solutions in the $t y$-plane on either sides of the equilibrium points).
$f=\frac{d y}{d t}$

phase
line

