Georgia Tech - Lorraine
Spring 2020
Differential Equations
Math 2552
$30 / 1 / 2020$

Last Name:
First Name:

EX	
1	
2	
TOT	

Quiz $n^{0} 2(20$ minutes $)$

Show your work and justify your answers. Calculators, notes, cell phones, books are not allowed. Please do not use red or pink ink. Maximum: 20 points

Exercise 1 ($3+3$ points) .
Classify the following differential equations as separable, linear, exact, or none of these.
Do not attempt to solve the differential equation. Justify your answers.

1. $\left(y^{2}+1\right)+(y+2 x y) \frac{d y}{d x}=0$.

- $y+2 x y=y(1+2 x)$. The DE is reparable: far $1+2 x \neq 0$, it can k vuitton as

$$
\frac{d y}{d x}=\frac{-\left(1+y^{2}\right)}{y} \frac{1}{1+2 x} \quad 0 \quad-\frac{y}{1+y^{2}} \frac{d y}{d x}=\frac{1}{1+2 x}
$$

- It is not enneare, far constance because of the berm y^{2} (or of $y \frac{d y}{d x}$)
- Set $M(x, y)=y^{L}+1, N(x, y)=y+2 x y$. Then $\frac{\partial M}{\partial y}=2 y=\frac{\partial N}{\partial x}$. So the DE is exact.

The fact that the DE is escact can also be oftanned recalling that
2. $\left(x^{2}+y\right)+(1+2 x) \frac{d y}{d x}=0$.
"separable" implies "exact"

- The DE is not reparable as x, y un $x^{2}+y$ cannot le separated
- The DE is lumeare as of the farm $a_{0}(x) \frac{d y}{d x}+a_{1}(x) y=g(x)$ where $a_{0}(x)=1+2 x, a_{1}(x)=1, g(x)=-x^{2}$. [Not demanded: standard farm is $\frac{d y}{d x}+\frac{1}{1+2 x} y=-\frac{x^{2}}{1+2 x}$; ib is man homogeneous $]$
- set $M(x, y)=x^{2}+y, N(x, y)=1+2 x$. Then $\frac{\partial M}{\partial y}=1 \neq 2=\frac{\partial N}{\partial x}$, so the DE is not
exact.

REM: If one checks that the DE is not exact, one also orbausis auto matrcally that the DE cannot te separable.

Exercise $2(1+4+3+4+2$ points) . Consider the initial value problem corresponding to the linear differential equation

$$
(x-1) \frac{d y}{d x}+\frac{2 x y}{x+1}=1
$$

with initial condition $y(0)=1$.
(a) Write the differential equation in standard form.
$\mathcal{F} x \neq 1, \quad \frac{d y}{d x}+\frac{2 x}{(x-1)(x+1)} y=\frac{1}{x-1}$
(b) Determine the largest interval I where the solution of the initial value problem exists and is unique. Justify your answer.
The coefficients $p(x)=\frac{2 x}{(x-1)(x+1)}, h(x)=\frac{1}{x-1}$ are defined and comtrmuous on $(-\infty ;-1) \cup(-1 ; 1) \cup(1 ;+\infty)$. since $O \in(-1 ; 1)$, the largest interval I is $(-1 ; 1)$
(c) Find an integrating factor for the differential equation.

$$
\frac{2 x}{(x-1)(x+1)}=\frac{2 x}{x^{2}-1} \text { and } \int \frac{2 x}{x^{2}-1} d x=\ln \left|x^{2}-1\right|+\text { constant }
$$

Am antiderivabunc of $\frac{2 x}{x^{2}-1}$ is therefore $A(x)=\ln \left|x^{2}-1\right|$. An integratrong factor is $\mu(x)=e^{A(x)}=\left|x^{2}-1\right|$. Since $\mu(x)$ will multiply both sides of the DE (and the same \pm sign will appear
(d) Find the general solution of the differential equation. an lodi h sides), we can also choose $\mu(x)=x^{2}-1$
Multiply roth sides of the DE by $\mu(x)$:

$$
\begin{aligned}
& \mu(x) \frac{d y}{d x}+\frac{2 x}{x^{2}-1} \mu(x) y=\frac{1}{x-1} \mu(x)=\frac{1}{x-1}\left(x^{2}-1\right)=x+1 \text {, ie. } \\
& \frac{d}{d x}(\mu y) \\
& \mu y=\int(x+1) d x=\frac{1}{2} x^{2}+x+C \text {, Thus } y=\frac{1}{x^{2}-1}\left(\frac{1}{2} x^{2}+x+C\right) \text {, where }
\end{aligned}
$$

(e) Find the solution of the given initial value problem.

We debermeñe C from the inetral condition: $1=y(0)=\frac{1}{-1}\left(\frac{1}{2} \cdot 0+O+C\right)$ done $c=-1$. Replaceumbo the general odubvon and get the odutrom of the IVP; $y=\frac{1}{x^{2}-1}\left(\frac{1}{2} x^{2}+x-1\right)$

