Georgia Tech - Lorraine
Spring 2020
Differential Equations
Math 2552
$3 / 29 / 2020$

Last Name:
First Name:

EX	
1	
2	
TOT	

Quiz $\mathbf{n}^{0} 4$

- Due Saturday, April 4, at noon (Atlanta time).
- The solution of the quiz must be your own. You may not show, discuss or compare your solutions with anyone else.
- Please return your quiz by email to: angela.pasquale@univ-lorraine.fr or angela.pasquale@georgiatech-metz.fr
Write "Quiz 4" in your email's subject.
Receipt will be acknowledged by email.
- Please check that your scanned solution is readable.
- Coverage of this quiz: Chapter 3 and Chapter 4 , sections 4.1 to 4.3 .
- Please do not use red or pink ink. If you are use a pencil, be sure that it is dark enough.
- Maximum: 20 points

In this quiz you will be asked to use the MIT Mathlet, Linear Phase Portraits: Matrix Entry, available at: https://mathlets.org/mathlets/linear-phase-portraits-matrix-entry/

Some indications about the MIT Mathlet "Linear Phase Portraits: Matrix Entry":
When the [Companion Matrix] option is selected, the first row entries of the displayed matrix are fixed to be 0 and 1. By deselecting the [Companion Matrix] option, you can choose all four entries a, b, c, d of the matrix. The values of a, b, c, d can be fixed between - 4 et 4 using the corresponding sliders.
The point in the upper-left window gives the determinant and the trace of the displayed matrix. If you select the [eigenvalues] option, the eigenvalues of the matrix become visible: their values are displayed and their location is plotted in the complex plane.
The big window on the upper-right corner of the screen shows the phase plane of the system (the coordinates are denoted by x and y instead of x_{1} and x_{2} as in the lectures). It displays the trajectories of a few solutions.
Placing the cursor on a point of the phase plane displays its (x, y)-coordinates below the bottom left corner of the phase plane. Clicking produces the trajectory passing through that point. You can clear all the trajectories using [Clear], and return to the original set of trajectories by re-setting one of the sliders for the matrix entries.

Exercise $1\left(4+3+\mathbf{3}=\mathbf{1 0}\right.$ points) Consider the system of linear DE's $\mathbf{x}^{\prime}=\mathbf{A x}$, where $\mathbf{A}=\left(\begin{array}{cc}2 & -3 \\ -1 & 0\end{array}\right)$ and $\mathbf{x}(t)=\binom{x(t)}{y(t)}$.

REM: they can also be viewed in the MIT Mathlets. See at
(a) Determine its general solution.

Eigenvalues of $A: \operatorname{det}(A-\lambda I)=0 \Leftrightarrow\left|\begin{array}{cc}2-\lambda & -3 \\ -1 & -\lambda\end{array}\right|=0 \Leftrightarrow-\lambda(2-\lambda)-3=0 \Leftrightarrow \lambda^{2}-2 \lambda-3=0 \Leftrightarrow \lambda=1+2<3$
Eugenvector for $\lambda_{1}=-1 ;(\boldsymbol{A}+I)\binom{x_{1}}{x_{2}}=\binom{0}{0} \Leftrightarrow\left(\begin{array}{cc}3 & -3 \\ -1 & 1\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \Leftrightarrow-x_{1}+x_{2}=0 \Leftrightarrow x_{2}=x_{1}$ choose e.g. $\boldsymbol{N}_{1}=\binom{1}{1}$
Eugenvedor for $\lambda_{2}=3:(A-3 I)\binom{x_{1}}{x_{2}}=\binom{0}{0} \Leftrightarrow\left(\begin{array}{ll}-1 & -3 \\ -1 & -3\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{a}{0} \Leftrightarrow x_{1}+3 x_{2}=0 \Leftrightarrow x_{1}=-3 x_{2}$ choose erg. $\boldsymbol{N}_{2}=\binom{-3}{1}$
The odutroms $x_{1}(t)=e^{-t} N_{1}$ and $x_{2}(t)=e^{3 t} N_{2}$ are linearly independent since $\lambda_{1} \neq \lambda_{2}$ The general solution of $x^{\prime}=A x$ is therefore

$$
x(t)=C_{1} e^{-t}\binom{1}{1}+C_{2} e^{3 t}\binom{-3}{1} \quad, C_{1}, C_{2} \text { real constants, } t \in \mathbb{R}
$$

(b) Enter the matrix A into the MIT Mathlets application. A few trajectories are displayed in the phase portrait. A trajectory crosses the x-axis at $x=2$. What is the solution having this as a trajectory assuming that this crossing occurs at $t=0$?
We haw to from the stutron of $x^{\prime}=A x$ with initial condition $x(0)=\binom{2}{0}$.

$$
\binom{2}{0}=x(0)=C_{1}\binom{1}{1}+C_{2}\binom{-3}{1} \Leftrightarrow\left\{\begin{array} { l }
{ C _ { 1 } - 3 C _ { 2 } = 2 } \\
{ C _ { 1 } + C _ { 2 } = 0 }
\end{array} \Leftrightarrow \left\{\begin{array} { l }
{ 4 C _ { 2 } = - 2 } \\
{ C _ { 1 } = - C _ { 2 } }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
C_{1}=1 / 2 \\
C_{2}=-1 / 2
\end{array}\right.\right.\right.
$$

Thus the ochution is $x(t)=\frac{1}{2} e^{-t}\binom{1}{1}-\frac{1}{2} e^{3 t}\binom{-3}{1}$ or $\left\{\begin{array}{l}x(t)=\frac{1}{2} e^{-t}+\frac{3}{2} e^{3 t} \\ y(t)=\frac{1}{2} e^{-t}-\frac{1}{2} e^{3 t}\end{array}\right.$
(c) Write the equation of the solution $\mathbf{x}(t)$ whose trajectory is the half-line in the $3^{r d}$ quadrant (ie. where $x<0, y<0$) and so that $\mathbf{x}(0)=\binom{-1}{-1}$.
The solutions having trajectory on half lines are those of the form $C_{1} e^{-t}\binom{1}{1}$ or $C_{2} e^{3 t}\binom{-3}{1}$. The trajectory is in the $3^{r e d}$ quadrant when the solution is $x(t)=C_{1} e^{-t}\binom{1}{1}$ with $C_{1}<0$. Dequveing that $x(0)=\binom{-1}{-1}$ froces C_{1}, marmely $\binom{-1}{-1}=x(0)=C_{1}\binom{1}{1} \Leftrightarrow C_{1}=-1$. The required sclutron is therefore

$$
x(t)=-e^{-t}\binom{1}{1}, t \in \mathbb{R} .
$$

(The Mathlet picture is at the end)

Exercise $2\left(4+3+\mathbf{3}\right.$ points). Consider second-order linear differential equation $x^{\prime \prime}-4 x^{\prime}+3 x=0$ where $x=x(t)$ is the unknown function.
(a) Find its general solution.

The characteristic equatron $\lambda^{2}-4 \lambda+3=(\lambda-3)(\lambda-1)=0$ has two diotumet real odeutrons $\lambda_{1}=1, \lambda_{2}=3$. The general solution is therefore

$$
x(t)=C_{1} e^{t}+C_{2} e^{3 t}, \quad C_{1}, C_{2} \text { constants, } t \in \mathbb{R}
$$

PLEASE SEE REMARKS ON THIS QUESTION AT THE END OF THIS FILE
(b) Consider the associated dynamical system $\mathbf{x}^{\prime}=\mathbf{A x}$ (ie. the associated system of linear DE). Enter the matrix A into the MIT Mathlets application. A trajectory crosses the x-axis at $x=2$. What is the solution of $x^{\prime \prime}-4 x^{\prime}+3 x=0$ which corresponds to this trajectory if we assume that this crossing occurs at $t=0$?
The associated syn stern of list ordve DE is $x^{\prime}=A x$ whore $A=\left(\begin{array}{cc}0 & 1 \\ -3 & 4\end{array}\right), x(t)=\binom{x(t)}{\left.x^{\prime}(t)\right)}$ The general sewhon of the associated system is hence $x(t)=\binom{c_{1} e^{t}+c_{2} c^{3 t}}{c_{1} e^{t}+3 C_{2} e^{3 t}}=C_{1} e^{t}\binom{1}{1}+c_{2} e^{3 t}\binom{1}{3}$. The solution $x(t)$ crossing the $x-a$
at $x=2$ when $t=0$ is the initial condition $x(0)=\binom{2}{0}$, i.e. $\binom{2}{0}=\binom{c_{1}+c_{2}}{C_{1}+3 C_{2}}$ Hence $\left\{\begin{array}{l}C_{1}+C_{2}=2 \\ C_{1}+3 C_{2}=0\end{array}\right.$, i.e. $\left\{\begin{array}{l}C_{2}=-1 \\ C_{1}=3\end{array}\right.$. The corresponding solution of $x^{\prime \prime}-4 x^{\prime}+3 x=0$ is $x(t)=3 e^{t}-e^{3 t}$.
(c) Sketch in the phase plane the trajectory corresponding to the solution $x(t)=e^{t}$ of $x^{\prime \prime}-4 x^{\prime}+3 x=$ 0.

If $x(t)=e^{t}$, thun $x^{\prime}(t)=e^{t}$. Hence we mud to sketch the trajectory of $x(t)=\binom{e^{t}}{e^{t}}$ $=e^{t}\binom{1}{1}$. If $\left\{\begin{array}{l}x(t)=e^{t} \\ y(t)=e^{t}\end{array}\right.$, then $\frac{y}{x}=1$, i.e. the trajectory lies an the straight line $y=x$. Since $x(t)=e^{t}$ describes $(0,+\infty)$ as $t \in(-\infty,+\infty)$, the trajectory is the half-line from 0 (excluded) to ∞ on $y=x$ inside the $1^{\text {st }}$ quadrant $(x>0, y>0)$; since $\lim _{t \rightarrow+\infty} e^{t}=+\infty$, the trajectory is directed array from the ougrin $(0,0)$

EXERCISE 1

LINEAR PHASE PORTRAITS: MATRIX ENTRY

(f)

EXERCISE 2

\square Companion Matrix

$$
A=\left[\begin{array}{ll}
0.00 & 1.00 \\
-3.00 & 4.00
\end{array}\right]
$$

\square Eigenvalues
$\longrightarrow \begin{aligned} & x=2.00 \\ & y=0.00\end{aligned}$

\square Companion Matrix

$$
A=\left[\begin{array}{ll}
0.00 & 1.00 \\
-3.00 & 4.00
\end{array}\right]
$$

\square Eigenvalues

SOME REMARKS ON THE SOLUTION OF EXERCISE $2(a)$

1. To from the general solution of a and oder homogeneous diff. equation with constant coeffrcuintis $a y^{\prime \prime}+b y^{\prime}+c y=0$ (where $a, l, c \in \mathbb{R}$), one does not med to pass to the anocciated systern of $1 s t$ oder $D E^{\prime}$ s. The form of the geneal solution only dyunds on the roots of the characte, rustre equation $a \lambda^{2}+f \lambda+c=0$. See Gheoum 4.3.2, p. 5 of the sides of Section 4.3
2. One has to pass to the associated syotern of $D E^{\prime}$ s to picture trajecdo els in the phase portrait. Namely; if $y=y(t)$ is a odutron to $a y^{\prime \prime}+t y^{\prime}+c y=0$, then the corresponding solution of the associated nyntern is $x(t)=\binom{x_{1}(t)}{x_{2}(t)}$ where $\left\{\begin{array}{l}x_{1}(t)=y(t) \\ x_{2}(t)=y^{\prime}(t)\end{array}\right.$
Example: if $y(t)=e^{t}$ is a solution of $y^{\prime \prime}-4 y^{\prime}+3 y=0$, then the corresponding solution of $x^{\prime}=A x$, where $A=\left(\begin{array}{cc}0 & 1 \\ -3 & 4\end{array}\right)$, is

$$
x(t)=\binom{e^{t}}{\left(e^{t}\right)^{\prime}}=\binom{e^{t}}{e^{t}}=e^{t}\binom{1}{1}
$$

rotational remark: here I am using the notation of the lectures. As remarked in the statement of quiz 4, the MIT epathlets employ a slightly different notation: the DE is $a x^{\prime \prime}+b x^{\prime}+c x=0$, with unknown function $x=x(t)$. The variables on the phase portraits are (x, y). This means that the associated syotern is $x^{\prime}=A \boldsymbol{x}$ with $\boldsymbol{x}(t)=\binom{x(t)}{y(t)}$. If $x(t)=e^{t}$ is a odutuon of $x^{\prime \prime}-4 x^{\prime}+3 x=0$, then the caresponding abutron for the associated Dyotem is $\boldsymbol{x}(t)=\binom{x(t)}{y(t)}$ with $y(t)=x^{\prime}(t)$. So $x(t)=\binom{x(t)}{x^{\prime}(t)}=\binom{e t}{e^{t}}$. Ane has to te careful in distinguishing $x(t)$ and $x(t)$ [mot bold versus fold]
3. Back to the notation from the lectures:

- If λ is a real root of the characteristic equation of $a y^{\prime \prime}+t y^{\prime}+c y=0$, then (I) $y(t)=e^{\lambda t}$ is a odutvorn of $a y^{\prime \prime}+f y^{\prime}+c y=0 \quad($ The $.4,3.1, ~ n .3)$ of shades
(2) λ is an eigenvalue of the matrix $A=\left(\begin{array}{cc}0 & 1 \\ -c / a & -l / a\end{array}\right)$ of the system anoclated with $a y^{\prime \prime}+f^{\prime}+c y=0$
(1.2 of slides)
(3) An eugersecta of A for the eigenvalue λ is

In particular, we do mot mud to compute the eigenvectors on the usual
nay $\left[=\right.$ by solving $(A-\lambda I)\binom{v_{1}}{v_{2}}=\binom{0}{0}$ to determine the stutron $\boldsymbol{x}(t)=e^{\lambda t}\binom{1}{\lambda}$ of $\boldsymbol{x}^{\prime}=\boldsymbol{A} \boldsymbol{x}$.

All of this is of course tue just recaux A has the very special form $A=\left(\begin{array}{cc}0 & 1 \\ -c / a & -b / a\end{array}\right)$.

- If we have a odutron $\boldsymbol{x}(t)=\binom{x_{1}(t)}{x_{2}(t)}$ for $\boldsymbol{x}^{\prime}=\boldsymbol{A} \boldsymbol{x}$ with $\boldsymbol{A}=\left(\begin{array}{cc}0 & 1 \\ s / a & -t / a\end{array}\right)$, then $y(t)=x_{1}(t)$ is a solution of $a y^{\prime \prime}+b y^{\prime}+c y=0$ and $x_{2}(t)=y(t)$
(pr.2-3 of the slides)

