Georgia Tech - Lorraine
Spring 2020
Differential Equations
Math 2552
4/15/2020

Last Name:
First Name:

EX	
1	
2	
TOT	

Quiz $\mathbf{n}^{0} 5$

- Please email your solution to angela.pasquale@univ-lorraine.fr or angela.pasquale@georgiatechmetz.fr by 12:15 pm (Atlanta time). Write "Quiz 5" in the subject.
Double check that your file is readable and complete.
- You can write your solution on the same pdf I sent you, for instance if you have a tablet or you can print it. If you need extra space, add as many pages as needed.
Otherwise, please write your solutions on blank paper. You do not need to copy the questions, just clearly mark the number of the exercise and separate the different exercises with a horizontal line.
- Show your work and justify your answers. Please organize your work clearly, neatly, and legibly. Identify your answers.
- The solution of this quiz must be your own. Do not show, discuss or compare your solution with anybody else.
- A table of Laplace transforms is at the end of this file. You can use the table on your textbook if you prefer.
- During the time interval from the release time and submission deadline, I will be online. If you have questions about the quiz, you can send me email messages.
- Maximum: 20 points.
(0) Formulas 15, and 16. in Gable 5,8,1 are mot in the program this semesters. You will not find SOME IMPORTANT REMARKS:
(1) In general, $\mathcal{L}\{f g\} \neq \mathcal{L}\{f\} \mathcal{L}\{g\}$

Ex: $f=g=1$ (the constant function), Then $f g=1$

$$
\left.\alpha\{1\}(s)=\frac{1}{s} \quad(f \propto s>0) \text {. So } \quad \mathcal{L}\{1 \cdot 1\}=\alpha\{1\}\right\}=\frac{1}{s} \text { whereas } \alpha\{1\} \alpha\{1]=\frac{1}{s} \cdot \frac{1}{s}=\frac{1}{s^{2}} \quad(f a \quad s>0)
$$

In particulate, to compute $\mathcal{L}\left\{u_{c}(t)\{(t-c)\}\right.$, you must use 13 . in the tate of Laplace
transfams (talk 5.3.1). This is NOT equal to $\alpha\left\{u_{c}(t)\right\} \alpha\{f(t-C)\}$
(2) J_{m} general, $\mathcal{L}^{-1}\{F G\} \neq \mathcal{L}^{-1}\{F\} \mathcal{L}^{-1}\{G\}$.

Ex $F(s)=G(s)=\frac{1}{s}$ for sro. Then $(F G)(s)=F(s) G(s)=\frac{1}{s^{2}}$
$\alpha^{-1}\{F G\}=\alpha^{-1}\left\{\frac{1}{s^{2}}\right\}=t \quad$ (see $2 . \mathrm{cm}$ Galle 5.3.1)
whereas $\mathcal{L}^{-1}\{F\} \alpha^{-1}\{G\}=\alpha^{-1}\left\{\frac{1}{s}\right\} \alpha^{-1}\left\{\frac{1}{s}\right\}=1.1=1$ (see 1. cm Gale 5.3.1)
In particular, to compute $\mathcal{L}^{-1}\{F\}$ whee F is a product of the form $F(s)=\frac{1}{\text { as }+i} \cdot \frac{1}{c s+d}$
you must make a partial faction decompositrom to resits F as a eunear comhnmohon $F(s)=\frac{A}{a s+1}+\frac{B}{c s+d}$ and hence use the lencearty of \mathcal{L}^{-1} to have $\mathcal{L}^{-1}\{F\}=A \mathcal{L}^{-1}\left\{\frac{1}{a s+l}\right\}+B \mathcal{L}^{-1}\left\{\frac{1}{c s+l}\right\}$ (which can \& compute from Gale 5.3.1 as $\frac{1}{a s+l}=\frac{1}{a(s+l / a)}$, Similar argument apples when as te is replaced e.g. My $s^{2}+a \ldots$... A subbase partice fraction decomposition is nulded.

Exercise 1 (4+6 points) .
(a) Write the following function using the unit step function

$$
\begin{aligned}
& f(t)= \begin{cases}t^{2} & \text { if } 0 \leq t<\pi \\
\cos (2 t) & \text { if } \pi \leq t<2 \pi \\
0 & \text { if } t \geq 2 \pi\end{cases} \\
& f(t)=t^{2} u_{0 \pi}(t)+\cos (2 t) u_{\pi, 2 \pi}(t) \\
&=t^{2}\left(u_{0}(t)-u_{\pi}(t)\right)+\cos (2 t)\left(u_{\pi}(t)-u_{2 \pi}(t)\right) \\
&=t^{2} u_{a}(t)+\left(\cos (2 t)-t^{2}\right) u_{\pi}(t)-\cos (2 t) u_{2 \pi}(t) \\
&=t^{2}+\left(\cos (2 t)-t^{2}\right) u_{\pi}(t)-\cos (2 t) u_{2 \pi}(t), f \pi t \geqslant 0
\end{aligned}
$$

(b) Find the Laplace transform of the function f in (a).

We rewrite the expression for of found in (a) as

$$
f(t)=t^{2}+f_{1}(t-\pi) u_{\pi}(t)-f_{2}(t-2 \pi) u_{2 \pi}(t)
$$

where $f_{1}(t-\pi)=\cos (2 t)-t^{2}$, i.e. $f_{1}(t)=\underbrace{\cos (2(t+\pi)})-(t+\pi)^{2}$

$$
\cos (2 t+2 \pi)=\cos (2 t)
$$

and $\quad f_{2}(t-2 \pi)=\cos (2 t)$, lie. $f_{2}(t)=\cos (2(t+2 \pi))=\cos (2 t)$
Recall that $\mathcal{L}\left\{u_{c}(t) f(t-c)\right\}(s)=e^{-c s} \mathcal{L}\{f\}(s)$ for all s where $\mathcal{L}\{f\}(s)$ is deformed
Hence:

$$
\begin{aligned}
\mathcal{L}\{f\}(s) & =\mathcal{L}\left\{t^{2}\right\}(s)+\mathcal{L}\left\{u_{\pi}(t) f_{1}(t-\pi)\right\}(s)-\mathcal{L}\left\{u_{2 \pi}(t) f_{2}(t-2 \pi)\right\}(s) \\
& =\frac{2}{s^{3}}+e^{-\pi s} \mathcal{L}\left\{f_{1}\right\}(s)-e^{-2 \pi s} \mathcal{L}\left\{f_{2}\right\}(s) \quad[\mathcal{G} s>0] \\
& =\frac{2}{s^{3}}+e^{-\pi s}\left[\mathcal{L}\{\cos (2 t)\}(s)-\mathcal{L}\left\{(t+\pi)^{2}\right\}(s)\right]-e^{-2 \pi s} \mathcal{L}\{\cos (2 t)\}(s) \\
& =\frac{2}{s^{3}}+\left(e^{-\pi s}-e^{-2 \pi s}\right) \frac{s}{s^{2}+4}-e^{-\pi s}\left(\frac{2}{s^{3}}+\frac{2 \pi t+\pi^{2}}{s^{2}}+\frac{\pi^{2}}{s}\right)
\end{aligned}
$$

Exercise 2 (10 points). Solve the following initial value problem using Laplace transforms.

$$
y^{\prime \prime}+2 y^{\prime}+5 y=e^{-t} \sin t \quad \text { with initial conditions } y(0)=y^{\prime}(0)=0
$$

Apply the Laplace Gansform \mathcal{L} to roth sides of the DE. Since \mathcal{L} is linear, we obtain

$$
\begin{equation*}
\mathcal{L}\left\{y^{\prime \prime}\right\}+\mathcal{L} \mathcal{L}\left\{y^{\prime}\right\}+5 \mathcal{L}\{y\}=\mathcal{L}\left\{e^{-t} \text { sim }\right\} \tag{*}
\end{equation*}
$$

Set $Y=\mathcal{L}\{y\}$. The properties of the daplace bansform and the inutral conditions give:

$$
\begin{aligned}
& \mathcal{L}\left\{y^{\prime \prime}\right\}(s)=s^{2} \mathcal{L}\{y\}(s)-s y(0)-y^{\prime}(0)=s^{2} y(s) \\
& \mathcal{L}\left\{y^{\prime}\right\}(s)=s \mathcal{L}\{y\}(s)-y(0)=s y(s)
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
& \mathcal{L}\left\{e^{-t} \sin t\right\}(s)=\mathcal{L}\{\operatorname{sim} t\}(s+1) \quad \text { (for } s>-1 \text {; see ohm } 5.2 .1 \text { or } \mathrm{m}^{0} 14 \mathrm{in} \\
& \left.=\frac{1}{(s+1)^{2}+1} \quad \text { (Galls, } n^{0} 5\right) \quad \text { the Ga } \quad 5.8 .1 \text {) }
\end{aligned}
$$

Thus (*) becomes:

$$
\begin{aligned}
& s^{2} Y(s)+2 s y(s)+5 Y(s)=\frac{1}{(s+1)^{2}+1} \\
& \left(s^{2}+2 s+5\right) Y(s)=\frac{1}{(s+1)^{2}+1} \\
& Y(s)=\frac{1}{s^{2}+2 s+5} \frac{1}{(s+1)^{2}+1}=\frac{1}{(s+1)^{2}+4} \frac{1}{(s+1)^{2}+1}
\end{aligned}
$$

Both polymormuals at the denomita are functions of $u=(S+1)^{2}$

$$
\frac{A}{u+4}+\frac{B}{u+1}=\frac{(A+B) u+(A+4 B)}{(u+1)(u+4)}, \text { i.e. }\left\{\begin{array}{l}
A+B=0 \\
A+4 B=1 \rightarrow B=\frac{1}{3}, A=-\frac{1}{3}
\end{array}\right.
$$

Hence $y(s)=-\frac{1}{3} \frac{1}{(s+1)^{2}+4}+\frac{1}{3} \frac{1}{(s+1)^{2}+1}$. Thus:

$$
\begin{align*}
y(t)=\mathcal{L}^{-1}\{y(s)\} & =-\frac{1}{3} \mathcal{L}^{-1}\left\{\frac{1}{(s+1)^{2}+4}\right\}(t)+\frac{1}{3} \mathcal{L}^{-1}\left\{\frac{1}{(s+1)^{2}+1}\right\} \\
& =-\frac{1}{6} \mathcal{L}^{-1}\left\{\left.\frac{2}{s^{2}+4}\right|_{s \rightarrow s+1}\right\}(t)+\frac{1}{3} \mathcal{L}^{-1}\left\{\left.\frac{1}{(s+1)^{2}+1}\right|_{s \rightarrow s+1}\right\}(\tag{t}\\
& =-\frac{1}{6} e^{-t} \sin (2 t)+\frac{1}{3} e^{-t} \sin t
\end{align*}
$$

Elementary Laplace transforms.

$$
f(t)=\mathcal{L}^{-1}\{F(s)\} \quad F(s)=\mathcal{L}\{f(t)\} \quad \text { Notes }
$$

1.	1	$\frac{1}{s}, \quad s>0$		Sec. 5.1; Ex. 4
2.	$e^{a t}$	$\frac{1}{s-a}$,	$s>a$	Sec. 5.1; Ex. 5
3.	$t^{n}, \quad n=$ positive integer	$\frac{n!}{s^{n+1}}, \quad s$	$s>0$	Sec. 5.2; Cor. 5.2.5
4.	$t^{p}, \quad p>-1$	$\frac{\Gamma(p+1)}{s^{p+1}}$,	, $s>0$	Sec. 5.1; Prob. 37
5.	$\sin a t$	$\frac{a}{s^{2}+a^{2}}$,	$s>0$	Sec. 5.1; Ex. 7
6.	$\cos a t$	$\frac{s}{s^{2}+a^{2}}$,	$s>0$	Sec. 5.1; Prob. 22
7.	$\sinh a t$	$\frac{a}{s^{2}-a^{2}}$,	$s>\|a\|$	Sec. 5.1; Prob. 19
8.	$\cosh a t$	$\frac{s}{s^{2}-a^{2}}$,	$s>\|a\|$	Sec. 5.1; Prob. 18
9.	$e^{a t} \sin b t$	$\frac{b}{(s-a)^{2}+b}$	$+b^{2}, \quad s>a$	Sec. 5.1; Prob. 23
10.	$e^{a t} \cos b t$	$\frac{s-a}{(s-a)^{2}+b}$	$b^{2}, \quad s>a$	Sec. 5.1; Prob. 24
11.	$t^{n} e^{a t}, \quad n=$ positive integer	$\overline{(s-a)^{n+1}}, \quad s>a$	$s>a$	Sec. 5.2; Prob. 8
12.	$u_{c}(t)$	$\frac{e^{-c s}}{s}$,	$s>0$	Sec. 5.5; Eq. (4)
13.	$u_{c}(t) f(t-c)$	$e^{-c s} F(s)$		Sec. 5.5; Eq. (6)
14.	$e^{c t} f(t)$	$F(s-c)$		Sec. 5.2; Thm. 5.2.1
15	$\int_{0}^{1} f(t-\tau) g(\tau) d \tau$	$F(s) G(s)$		Sec. 5.6; Thm. 5.8.3
16.	$\delta(t-c)$ THIS SEMESTER	$e^{-c s}$		Sec. 5.7; Eq. (14)
17.	$f^{(n)}(t)$	$s^{n} F(s)-s^{n-1} f(0)$		Sec. 5.2; Cor. 5.2.3
18.	$t^{n} f(t)$	$(-1)^{n} F^{(n)}(s)$		Sec. 5.2; Thm. 5.2.4

