Recitation

Section 3.2: Exercise 15

$x^{\prime}=-x+y+1, y^{\prime}=x+y-3$
(a) Find the equilibrium solution, or critical point, of the given system.
(b) Use a computer to dra a direction field and phase portrait centered at the critical point.
(c) Describe how the system behave in the vicinity of the critical point.

See https://homepages.bluffton.edu/~nesterd/java/slopefields.html

Section 3.3: Exercise 10

$\mathbf{x}^{\prime}=\left(\begin{array}{cc}5 & -1 \\ 3 & 1\end{array}\right) \mathbf{x}$
Find the general solution of the given system of equations. Also draw a direction fields and phase portrait. Describe the behaviour of the solution as $t \rightarrow \infty$.

See https://homepages.bluffton.edu/~nesterd/java/slopefields.html

Section 3.3: Exercise 19

The eigenvalues and eigenvectors of \mathbf{A} are given. Consider the corresponding system $\mathbf{x}^{\prime}=\mathbf{A x}$. Without using a computer, draw each of the following graphs:

1. Sketch a phase portrait of the system.
2. Sketch a trajectory passing through the initial point $(2,3)$.
3. For the trajectory in part (b), sketch the component plots of x_{1} versus t and x_{2} versus t on the same set of axes.

$$
\lambda_{1}=-1 \quad \mathbf{v}_{1}=\binom{-1}{2} ; \quad \lambda_{2}=2 \quad \mathbf{v}_{2}=\binom{1}{2} .
$$

