Symmetry breaking operators for the reductive dual pair $(\textrm{U}_l,\textrm{U}_{l′})$, with M. McKee and T. Przebinda,
Indag. Math.36 (2025), Issue 2, 413-449
→
doi.org/10.1016/j.indag.2024.06.004,
Preprint version:
arxiv:2312.05546
The resonances of the Capelli operators for small split orthosymplectic dual pairs
with Roberto Bramati and Tomasz Przebinda,
J. Lie Theory 33 (2023), no. 1, 93–132.
→
Preprint version:
2208.01759,
hal-03744457
Hypergeometric functions of type BC and standard
multiplicities,
with E. K. Narayanan, Int. Math. Res. Not.,
Volume 2022, Issue 19, October 2022, Pages 15111–15154 (online publication: 18 June 2021)
→
doi.org/10.1093/imrn/rnab146
. Preprint version:
arxiv:2008.00337
Resonances for the Laplacian on Riemannian symmetric spaces:
the case of SL(3,R)/SO(3), with J. Hilgert and T. Przebinda,
Represent. Theory 21 (2017), 416-457.
→
doi.org/10.1090/ert/506.
Preprint version: arxiv:1411.6527,
hal-01096756
Resonances for the Laplacian on products of two rank one
Riemannian symmetric spaces, with J. Hilgert and T. Przebinda,
J. Funct. Anal. 272 (2017), no. 4, 1477-1523.
→
doi.org/10.1016/j.jfa.2016.12.009. Preprint version:
arxiv:1508.7032,
hal-03960463
Resonances for the Laplacian: the cases BC2 and
C2 (except SO0(p,2) with p>2 odd),
with J. Hilgert and T. Przebinda, pages 159-182, in Geometric Methods in Physics
(XXXIV Workshop, Bialowie\dot{z}a, Poland, 2015),
P. Kielanowski, S. Twareque Ali, P. Bieliavsky, A. Odzijewicz, M. Schlichenmaier,
T. Voronov (eds.), Trends in Mathematics, Springer, 2016.
→
[link.springer]. Preprint version:
arxiv:1511.00488;
hal-01232037
Semisimple orbital integrals on the symplectic space for a real
reductive dual pair, with M. Mckee and T. Przebinda,
J. Funct. Anal. 268 (2015), 278-335.
→
doi:10.1016/j.jfa.2014.10.002.
Preprint version:
arXiv:1112.0479,
hal-01096793
Asymptotics of Harish-Chandra expansions, bounded hypergeometric
functions associated with root systems, and applications,
with E.K. Narayanan and S. Pusti, Adv. Math. 252 (2014), 227-259.
→
doi:10.1016/j.aim.2013.10.027. Preprint version:
arxiv:1201.3891,
hal-01096768
Ramanujan's Master theorem for the hypergeometric Fourier transform on
root systems, with G. Ólafsson, J. Fourier Anal. Appl.
19 (2013), no. 6, 1150-1183.
→
doi 10.1007/s00041-013-9290-5. Preprint version:
arXiv:1211.0024,
hal-01232021
Analytic and group-theoretic aspects of the Cosine Transform, with G.
Ólafsson and B. Rubin, Contemp. Math. 584 (2013),
167-188. In: Geometric Analysis and Integral Geometry, Eric Todd Quinto, Fulton Gonzalez, Jens Gerlach Christensen (Eds).
→
http://dx.doi.org/10.1090/conm/598/12009. Preprint version:
arXiv:1209.1822,
hal-01281896
The Cos^\lambda and Sin^\lambda transforms as intertwining
operators between generalized principal series representations of
SL(n+1,K),
with G. Ólafsson, Adv. Math. 229 (2012), 267-293.
→
doi:10.1016/j.aim.2011.08.015.
Preprint version: arXiv:1103.4557,
hal-01279429
Resonances and residue operators for symmetric spaces of rank
one, with J. Hilgert, J. Math. Pures et Appl. 91 (2009), 495-507
→
doi:10.1016/j.matpur.2009.01.009.
Preprint version: hal-03960463
Support properties and Holmgren's uniqueness theorem for differential
operators with hyperplane singularities, with G. Ólafsson,
J. Funct. Anal. 239 (2006), no. 1, 21--43.
→
doi:10.1016/j.jfa.2005.12.006. Preprint version:
arXiv:math/0410581,
The Paley-Wiener theorem for the Jacobi transform and the local
Huygens' principle for root systems with even multiplicities, with T. Branson and G. Ólafsson,
Indag. Math. (N.S.) 16 (2005), no. 3-4, 429-442.
→
doi:10.1016/S0019-3577(05)80034-5. Preprint version:
arXiv:math/0508234,
hal-03960463
The Paley-Wiener theorem and the local Huygens' principle for
compact symmetric spaces: the even multiplicity case,
with T. Branson and G. Ólafsson,
Indag. Math. (N.S.) 16 (2005), no. 3-4, 393--428.
→
doi:10.1016/S0019-3577(05)80033-3. Preprint version:
arXiv:math/0411383,
hal-03960498
Asymptotic analysis of $\Theta$-hypergeometric functions.
Invent. Math. 157, No 1 (2004) 71-122.
→
10.1007/s00222-003-0349-9
.
Preprint version: [ps (688k)],
hal-03960443
A Paley-Wiener theorem for the Θ-hypergeometric transform: the
even multiplicity case, with G. Ólafsson.
J. Math. Pures et Appl. 83, No 7 (2004), 869-927.
→
doi:10.1016/j.matpur.2004.02.002. Preprint version:
arXiv:math/0304361.
The dual horospherical Radon transform as a limit of spherical Radon
transforms, with J. Hilgert and E. Vinberg. In: S. G. Gindikin (ed.),
Lie Groups and Symmetric Spaces: In Memory of F. I. Karpelevich,
Amer. Math. Soc. Translations (2) 210 (2003), 135-143.
→
Preprint version [ps (186k)],
Regularity properties of generalized Harish-Chandra expansions,
with G. Ólafsson. In A. Strasburger et al. (eds.),
Geometry and analysis on finite- and infinite-dimensional Lie groups,
Banach Center Publications 55 (2002), 335-348.
→
https://www.impan.pl/en/publishing-house/banach-center-publications/all/55.
On the meromorphic extension of the spherical functions
on noncompactly causal symmetric spaces, with G. Ólafsson,
J. Funct. Anal. 181 (2001), no. 2, 346-401
(doi:10.1006/jfan.2000.3721)
→
doi:10.1006/jfan.2000.3721.
Representations and Characters:
Revisiting the Works of Harish-Chandra and André Weil, edited by Hung Yean Loke (National University of Singapore, Singapore), Angela Pasquale (Université de Lorraine, France), Tomasz Przebinda (University of Oklahoma, USA), and Binyong Sun (Zhejiang University, China), Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore: Volume 45, World Scientifics, March 2026, 370 pages, → https://www.worldscientific.com/worldscibooks/10.1142/14652#t=aboutBook
Theses
A theory of $\Theta$-spherical functions.
Habilitation thesis, TU-Clausthal (2002)
[ps.gz (291k)].
A Paley-Wiener theorem for the inverse spherical transform on certain
symmetric spaces. Ph.D. thesis, University of Washington (1996)
[ps.gz (k)].
$\Theta$-hypergeometric functions and shift operators,
Oberwolfach Reports 1, No. 1, 2004, pages 339-341. Link
Weyl's integration formula for U(N), Lecture given at
the DMV Seminar
``The Riemann Zeta Function and Random Matrix Theory'',
Oberwolfach, 15-21 october 2000.
Web page
of the Seminar.
Harmonic analysis on vector bundles over Riemannian symmetric spaces,
Research Highlights, Annual Report 1997, Mathematical Institute,
Rijksuniversiteit Leiden (1999), 10--15.
Differential operators, radial parts and a one-parameter family of
hyper$
with E. K. Narayanan, 36 pages, 2017.
→
arxiv:1705.00277
Weyl Calculus and Dual Pairs, with M. McKee and T. Przebinda,
99 pages, 2014.
→
arxiv:1405.2431