Symmetry breaking operators for dual pairs with one member compact,
with M. McKee and T. Przebinda
→
Preprint version:
arxiv:2107.09348,
hal-03293407
Scientific publications
Symmetry breaking operators for the reductive dual pair $(\textrm{U}_l,\textrm{U}_{l′})$, with M. McKee and T. Przebinda,
Indag. Math., in press
→
doi.org/10.1016/j.indag.2024.06.004,
Preprint version:
arxiv:2312.05546
The resonances of the Capelli operators for small split orthosymplectic dual pairs
with Roberto Bramati and Tomasz Przebinda,
J. Lie Theory 33 (2023), no. 1, 93–132.
→
Preprint version:
2208.01759,
hal-03744457
Hypergeometric functions of type BC and standard
multiplicities,
with E. K. Narayanan, Int. Math. Res. Not.,
Volume 2022, Issue 19, October 2022, Pages 15111–15154 (online publication: 18 June 2021)
→
doi.org/10.1093/imrn/rnab146
. Preprint version:
arxiv:2008.00337
Resonances for the Laplacian on Riemannian symmetric spaces:
the case of SL(3,R)/SO(3), with J. Hilgert and T. Przebinda,
Represent. Theory 21 (2017), 416-457.
→
doi.org/10.1090/ert/506.
Preprint version: arxiv:1411.6527,
hal-01096756
Resonances for the Laplacian on products of two rank one
Riemannian symmetric spaces, with J. Hilgert and T. Przebinda,
J. Funct. Anal. 272 (2017), no. 4, 1477-1523.
→
doi.org/10.1016/j.jfa.2016.12.009. Preprint version:
arxiv:1508.7032,
hal-03960463
Resonances for the Laplacian: the cases BC2 and
C2 (except SO0(p,2) with p>2 odd),
with J. Hilgert and T. Przebinda, pages 159-182, in Geometric Methods in Physics
(XXXIV Workshop, Bialowie\dot{z}a, Poland, 2015),
P. Kielanowski, S. Twareque Ali, P. Bieliavsky, A. Odzijewicz, M. Schlichenmaier,
T. Voronov (eds.), Trends in Mathematics, Springer, 2016.
→
[link.springer]. Preprint version:
arxiv:1511.00488;
hal-01232037
Semisimple orbital integrals on the symplectic space for a real
reductive dual pair, with M. Mckee and T. Przebinda,
J. Funct. Anal. 268 (2015), 278-335.
→
doi:10.1016/j.jfa.2014.10.002.
Preprint version:
arXiv:1112.0479,
hal-01096793
Asymptotics of Harish-Chandra expansions, bounded hypergeometric
functions associated with root systems, and applications,
with E.K. Narayanan and S. Pusti, Adv. Math. 252 (2014), 227-259.
→
doi:10.1016/j.aim.2013.10.027. Preprint version:
arxiv:1201.3891,
hal-01096768
Ramanujan's Master theorem for the hypergeometric Fourier transform on
root systems, with G. Ólafsson, J. Fourier Anal. Appl.
19 (2013), no. 6, 1150-1183.
→
doi 10.1007/s00041-013-9290-5. Preprint version:
arXiv:1211.0024,
hal-01232021
Analytic and group-theoretic aspects of the Cosine Transform, with G.
Ólafsson and B. Rubin, Contemp. Math. 584 (2013),
167-188. In: Geometric Analysis and Integral Geometry, Eric Todd Quinto, Fulton Gonzalez, Jens Gerlach Christensen (Eds).
→
http://dx.doi.org/10.1090/conm/598/12009. Preprint version:
arXiv:1209.1822,
hal-01281896
The Cos^\lambda and Sin^\lambda transforms as intertwining
operators between generalized principal series representations of
SL(n+1,K),
with G. Ólafsson, Adv. Math. 229 (2012), 267-293.
→
doi:10.1016/j.aim.2011.08.015.
Preprint version: arXiv:1103.4557,
hal-01279429
Resonances and residue operators for symmetric spaces of rank
one, with J. Hilgert, J. Math. Pures et Appl. 91 (2009), 495-507
→
doi:10.1016/j.matpur.2009.01.009.
Preprint version: hal-03960463
Support properties and Holmgren's uniqueness theorem for differential
operators with hyperplane singularities, with G. Ólafsson,
J. Funct. Anal. 239 (2006), no. 1, 21--43.
→
doi:10.1016/j.jfa.2005.12.006. Preprint version:
arXiv:math/0410581,
The Paley-Wiener theorem for the Jacobi transform and the local
Huygens' principle for root systems with even multiplicities, with T. Branson and G. Ólafsson,
Indag. Math. (N.S.) 16 (2005), no. 3-4, 429-442.
→
doi:10.1016/S0019-3577(05)80034-5. Preprint version:
arXiv:math/0508234,
hal-03960463
The Paley-Wiener theorem and the local Huygens' principle for
compact symmetric spaces: the even multiplicity case,
with T. Branson and G. Ólafsson,
Indag. Math. (N.S.) 16 (2005), no. 3-4, 393--428.
→
doi:10.1016/S0019-3577(05)80033-3. Preprint version:
arXiv:math/0411383,
hal-03960498
Asymptotic analysis of $\Theta$-hypergeometric functions.
Invent. Math. 157, No 1 (2004) 71-122.
→
10.1007/s00222-003-0349-9
.
Preprint version: [ps (688k)],
hal-03960443
A Paley-Wiener theorem for the Θ-hypergeometric transform: the
even multiplicity case, with G. Ólafsson.
J. Math. Pures et Appl. 83, No 7 (2004), 869-927.
→
doi:10.1016/j.matpur.2004.02.002. Preprint version:
arXiv:math/0304361.
The dual horospherical Radon transform as a limit of spherical Radon
transforms, with J. Hilgert and E. Vinberg. In: S. G. Gindikin (ed.),
Lie Groups and Symmetric Spaces: In Memory of F. I. Karpelevich,
Amer. Math. Soc. Translations (2) 210 (2003), 135-143.
→
Preprint version [ps (186k)],
Regularity properties of generalized Harish-Chandra expansions,
with G. Ólafsson. In A. Strasburger et al. (eds.),
Geometry and analysis on finite- and infinite-dimensional Lie groups,
Banach Center Publications 55 (2002), 335-348.
→
http://journals.impan.gov.pl/Publ/bc55.html.
On the meromorphic extension of the spherical functions
on noncompactly causal symmetric spaces, with G. Ólafsson,
J. Funct. Anal. 181 (2001), no. 2, 346-401
(doi:10.1006/jfan.2000.3721)
→
doi:10.1006/jfan.2000.3721.
$\Theta$-hypergeometric functions and shift operators,
Oberwolfach Reports 1, No. 1, 2004, pages 339-341. Link
Weyl's integration formula for U(N), Lecture given at
the DMV Seminar
``The Riemann Zeta Function and Random Matrix Theory'',
Oberwolfach, 15-21 october 2000.
Web page
of the Seminar.
Harmonic analysis on vector bundles over Riemannian symmetric spaces,
Research Highlights, Annual Report 1997, Mathematical Institute,
Rijksuniversiteit Leiden (1999), 10--15.
Differential operators, radial parts and a one-parameter family of
hyper$
with E. K. Narayanan, 36 pages, 2017.
→
arxiv:1705.00277
Weyl Calculus and Dual Pairs, with M. McKee and T. Przebinda,
99 pages, 2014.
→
arxiv:1405.2431